急性髓性白血病中的微生物代谢组学:从发病机制到治疗

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Advances in Clinical and Experimental Medicine Pub Date : 2024-10-21 DOI:10.17219/acem/191559
Aneta Nowicka, Lidia Gil
{"title":"急性髓性白血病中的微生物代谢组学:从发病机制到治疗","authors":"Aneta Nowicka, Lidia Gil","doi":"10.17219/acem/191559","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), the most common leukemia in adults, is a biologically heterogeneous disease arising from clonally proliferating hematopoietic stem cells. Increased appreciation of novel genetic methods has improved the understanding of AML biology. Recently, the emerging field of metabolomics has indicated qualitative and quantitative alterations in metabolic profiles in AML pathogenesis, progression and treatment. Multiple metabolic and molecular pathways regulate human metabolism and host-microbiome interactions may significantly affect this biochemical machinery. Microbiota have been found to play a significant role in hematopoietic function, metabolism and immunity, contributing to AML occurrence. A large number of studies have highlighted the importance of the composition and diversity of the gut microbiota (GM) in response to treatment and prognosis in AML. Moreover, strong evidence emphasizes the detrimental link between dysbiosis and infectious complications, a leading cause of morbidity and mortality for patients with AML. Several microbiota-related mechanisms have been linked to particular changes in host physiology so far, and microbial-derived metabolites belong to one of the most important. Circulating in the body, they modulate human conditions both locally and systemically. The extensive and diverse repertoire of bacterial metabolic functions plays a critical role in numerous processes, including leukemogenesis. Integrative analysis of microbiome and metabolome data is a promising avenue for better understanding the complex relationship between the microbiota, biochemical alterations and AML pathogenesis to effectively prevent, treat and mitigate its outcomes. This review concentrates on the pathologic roles and therapeutic implications of microbe-derived metabolites in AML settings.</p>","PeriodicalId":7306,"journal":{"name":"Advances in Clinical and Experimental Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial metabolomics in acute myeloid leukemia: From pathogenesis to treatment.\",\"authors\":\"Aneta Nowicka, Lidia Gil\",\"doi\":\"10.17219/acem/191559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute myeloid leukemia (AML), the most common leukemia in adults, is a biologically heterogeneous disease arising from clonally proliferating hematopoietic stem cells. Increased appreciation of novel genetic methods has improved the understanding of AML biology. Recently, the emerging field of metabolomics has indicated qualitative and quantitative alterations in metabolic profiles in AML pathogenesis, progression and treatment. Multiple metabolic and molecular pathways regulate human metabolism and host-microbiome interactions may significantly affect this biochemical machinery. Microbiota have been found to play a significant role in hematopoietic function, metabolism and immunity, contributing to AML occurrence. A large number of studies have highlighted the importance of the composition and diversity of the gut microbiota (GM) in response to treatment and prognosis in AML. Moreover, strong evidence emphasizes the detrimental link between dysbiosis and infectious complications, a leading cause of morbidity and mortality for patients with AML. Several microbiota-related mechanisms have been linked to particular changes in host physiology so far, and microbial-derived metabolites belong to one of the most important. Circulating in the body, they modulate human conditions both locally and systemically. The extensive and diverse repertoire of bacterial metabolic functions plays a critical role in numerous processes, including leukemogenesis. Integrative analysis of microbiome and metabolome data is a promising avenue for better understanding the complex relationship between the microbiota, biochemical alterations and AML pathogenesis to effectively prevent, treat and mitigate its outcomes. This review concentrates on the pathologic roles and therapeutic implications of microbe-derived metabolites in AML settings.</p>\",\"PeriodicalId\":7306,\"journal\":{\"name\":\"Advances in Clinical and Experimental Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17219/acem/191559\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17219/acem/191559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

急性髓性白血病(AML)是成人中最常见的白血病,是一种由造血干细胞克隆增殖引起的生物异质性疾病。对新型遗传学方法的日益重视提高了人们对急性髓细胞白血病生物学的认识。最近,代谢组学这一新兴领域表明,在急性髓细胞性白血病的发病、进展和治疗过程中,代谢谱发生了定性和定量的改变。多种代谢和分子途径调节着人体的新陈代谢,而宿主与微生物组之间的相互作用可能会对这一生化机制产生重大影响。研究发现,微生物群在造血功能、新陈代谢和免疫方面发挥着重要作用,导致急性髓细胞性白血病的发生。大量研究都强调了肠道微生物群(GM)的组成和多样性对急性髓细胞性白血病治疗和预后反应的重要性。此外,大量证据强调了菌群失调与感染性并发症之间的不利联系,而感染性并发症是急性髓细胞性白血病患者发病和死亡的主要原因。迄今为止,有几种微生物群相关机制与宿主生理的特殊变化有关,微生物衍生的代谢物是其中最重要的一种。它们在体内循环,可调节人体局部和全身的状况。细菌代谢功能的广泛性和多样性在包括白血病发生在内的许多过程中发挥着关键作用。对微生物组和代谢组数据进行综合分析,是更好地了解微生物组、生化改变和急性髓细胞性白血病发病机制之间的复杂关系,从而有效预防、治疗和减轻其后果的一条很有前景的途径。本综述将集中讨论微生物衍生代谢物在急性髓细胞性白血病中的病理作用和治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial metabolomics in acute myeloid leukemia: From pathogenesis to treatment.

Acute myeloid leukemia (AML), the most common leukemia in adults, is a biologically heterogeneous disease arising from clonally proliferating hematopoietic stem cells. Increased appreciation of novel genetic methods has improved the understanding of AML biology. Recently, the emerging field of metabolomics has indicated qualitative and quantitative alterations in metabolic profiles in AML pathogenesis, progression and treatment. Multiple metabolic and molecular pathways regulate human metabolism and host-microbiome interactions may significantly affect this biochemical machinery. Microbiota have been found to play a significant role in hematopoietic function, metabolism and immunity, contributing to AML occurrence. A large number of studies have highlighted the importance of the composition and diversity of the gut microbiota (GM) in response to treatment and prognosis in AML. Moreover, strong evidence emphasizes the detrimental link between dysbiosis and infectious complications, a leading cause of morbidity and mortality for patients with AML. Several microbiota-related mechanisms have been linked to particular changes in host physiology so far, and microbial-derived metabolites belong to one of the most important. Circulating in the body, they modulate human conditions both locally and systemically. The extensive and diverse repertoire of bacterial metabolic functions plays a critical role in numerous processes, including leukemogenesis. Integrative analysis of microbiome and metabolome data is a promising avenue for better understanding the complex relationship between the microbiota, biochemical alterations and AML pathogenesis to effectively prevent, treat and mitigate its outcomes. This review concentrates on the pathologic roles and therapeutic implications of microbe-derived metabolites in AML settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Clinical and Experimental Medicine
Advances in Clinical and Experimental Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
3.70
自引率
4.80%
发文量
153
审稿时长
6-12 weeks
期刊介绍: Advances in Clinical and Experimental Medicine has been published by the Wroclaw Medical University since 1992. Establishing the medical journal was the idea of Prof. Bogumił Halawa, Chair of the Department of Cardiology, and was fully supported by the Rector of Wroclaw Medical University, Prof. Zbigniew Knapik. Prof. Halawa was also the first editor-in-chief, between 1992-1997. The journal, then entitled "Postępy Medycyny Klinicznej i Doświadczalnej", appeared quarterly. Prof. Leszek Paradowski was editor-in-chief from 1997-1999. In 1998 he initiated alterations in the profile and cover design of the journal which were accepted by the Editorial Board. The title was changed to Advances in Clinical and Experimental Medicine. Articles in English were welcomed. A number of outstanding representatives of medical science from Poland and abroad were invited to participate in the newly established International Editorial Staff. Prof. Antonina Harłozińska-Szmyrka was editor-in-chief in years 2000-2005, in years 2006-2007 once again prof. Leszek Paradowski and prof. Maria Podolak-Dawidziak was editor-in-chief in years 2008-2016. Since 2017 the editor-in chief is prof. Maciej Bagłaj. Since July 2005, original papers have been published only in English. Case reports are no longer accepted. The manuscripts are reviewed by two independent reviewers and a statistical reviewer, and English texts are proofread by a native speaker. The journal has been indexed in several databases: Scopus, Ulrich’sTM International Periodicals Directory, Index Copernicus and since 2007 in Thomson Reuters databases: Science Citation Index Expanded i Journal Citation Reports/Science Edition. In 2010 the journal obtained Impact Factor which is now 1.179 pts. Articles published in the journal are worth 15 points among Polish journals according to the Polish Committee for Scientific Research and 169.43 points according to the Index Copernicus. Since November 7, 2012, Advances in Clinical and Experimental Medicine has been indexed and included in National Library of Medicine’s MEDLINE database. English abstracts printed in the journal are included and searchable using PubMed http://www.ncbi.nlm.nih.gov/pubmed.
期刊最新文献
Development and validation of the antibody-dependent cellular phagocytosis-based signature: A prognostic risk model of gastric cancer. Laboratory synthesis and preparation of thermo-responsive polymeric micelle and hydrogel for resveratrol delivery and release. Otolaryngological manifestations in patients with obstructive sleep apnea and continuous positive airway pressure users: A systematic review. Prognostic value of inflammation-related model in hepatitis B acute-on-chronic liver failure. Research status and controversy on non-small cell lung cancer stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1