从临床动物源性表面活性物质转向肽基合成肺表面活性物质。

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI:10.1152/ajplung.00186.2024
Frans J Walther, Alan J Waring
{"title":"从临床动物源性表面活性物质转向肽基合成肺表面活性物质。","authors":"Frans J Walther, Alan J Waring","doi":"10.1152/ajplung.00186.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Research on lung surfactant has exerted a great impact on newborn respiratory care and significantly improved survival and outcome of preterm infants with respiratory distress syndrome (RDS) due to surfactant deficiency because of lung immaturity. Current clinical, animal-derived, surfactants are among the most widely tested compounds in neonatology. However, limited availability, high production costs, and ethical concerns about using animal-derived products constitute important limitations in their universal application. Synthetic lung surfactant offers a promising alternative to animal-derived surfactants by providing improved consistency, quality and purity, availability and scalability, ease of production and lower costs, acceptance, and safety for the treatment of neonatal RDS and other lung conditions. Third-generation synthetic surfactants built around surfactant protein B (SP-B) and C (SP-C) peptide mimics stand at the forefront of innovation in neonatal pulmonary medicine, while nasal continuous positive airway pressure (nCPAP) has become the standard noninvasive respiratory support for preterm infants. nCPAP can prevent the risk of chronic lung disease (bronchopulmonary dysplasia) and reduce lung injury by avoiding intubation and mechanical ventilation, is a relatively simple technique, and can be initiated safely and effectively in the delivery room. Combining nCPAP with noninvasive, preferably aerosol, delivery of synthetic lung surfactant promises to improve respiratory outcomes for preterm infants, especially in low- and middle-income countries.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L883-L889"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving on from clinical animal-derived surfactants to peptide-based synthetic pulmonary surfactant.\",\"authors\":\"Frans J Walther, Alan J Waring\",\"doi\":\"10.1152/ajplung.00186.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on lung surfactant has exerted a great impact on newborn respiratory care and significantly improved survival and outcome of preterm infants with respiratory distress syndrome (RDS) due to surfactant deficiency because of lung immaturity. Current clinical, animal-derived, surfactants are among the most widely tested compounds in neonatology. However, limited availability, high production costs, and ethical concerns about using animal-derived products constitute important limitations in their universal application. Synthetic lung surfactant offers a promising alternative to animal-derived surfactants by providing improved consistency, quality and purity, availability and scalability, ease of production and lower costs, acceptance, and safety for the treatment of neonatal RDS and other lung conditions. Third-generation synthetic surfactants built around surfactant protein B (SP-B) and C (SP-C) peptide mimics stand at the forefront of innovation in neonatal pulmonary medicine, while nasal continuous positive airway pressure (nCPAP) has become the standard noninvasive respiratory support for preterm infants. nCPAP can prevent the risk of chronic lung disease (bronchopulmonary dysplasia) and reduce lung injury by avoiding intubation and mechanical ventilation, is a relatively simple technique, and can be initiated safely and effectively in the delivery room. Combining nCPAP with noninvasive, preferably aerosol, delivery of synthetic lung surfactant promises to improve respiratory outcomes for preterm infants, especially in low- and middle-income countries.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L883-L889\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00186.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00186.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺表面活性物质的研究对新生儿呼吸护理产生了重大影响,并显著改善了因肺部不成熟而缺乏表面活性物质导致呼吸窘迫综合征(RDS)的早产儿的存活率和预后。目前临床上使用的动物源性表面活性剂是新生儿科测试最广泛的化合物之一,但其有限的可用性、高昂的生产成本以及使用动物源性产品的伦理顾虑构成了其普遍应用的重要限制。合成肺表面活性物质在一致性、质量和纯度、可用性和可扩展性、易生产性、低成本、可接受性和安全性等方面均有提高,可替代动物源表面活性物质,用于治疗新生儿 RDS 和其他肺部疾病。以表面活性蛋白 B(SP-B)和 C(SP-C)肽模拟物为基础的第三代合成表面活性物质站在了新生儿肺部医学创新的最前沿,而鼻腔持续气道正压(nCPAP)已成为早产儿的标准无创呼吸支持。nCPAP 可避免插管和机械通气,从而预防慢性肺部疾病(支气管肺发育不良)的风险并减少肺损伤,是一种相对简单的技术,可在产房安全有效地启动。将 nCPAP 与合成肺表面活性物质的无创(最好是气溶胶)给药相结合,有望改善早产儿的呼吸预后,尤其是在中低收入国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving on from clinical animal-derived surfactants to peptide-based synthetic pulmonary surfactant.

Research on lung surfactant has exerted a great impact on newborn respiratory care and significantly improved survival and outcome of preterm infants with respiratory distress syndrome (RDS) due to surfactant deficiency because of lung immaturity. Current clinical, animal-derived, surfactants are among the most widely tested compounds in neonatology. However, limited availability, high production costs, and ethical concerns about using animal-derived products constitute important limitations in their universal application. Synthetic lung surfactant offers a promising alternative to animal-derived surfactants by providing improved consistency, quality and purity, availability and scalability, ease of production and lower costs, acceptance, and safety for the treatment of neonatal RDS and other lung conditions. Third-generation synthetic surfactants built around surfactant protein B (SP-B) and C (SP-C) peptide mimics stand at the forefront of innovation in neonatal pulmonary medicine, while nasal continuous positive airway pressure (nCPAP) has become the standard noninvasive respiratory support for preterm infants. nCPAP can prevent the risk of chronic lung disease (bronchopulmonary dysplasia) and reduce lung injury by avoiding intubation and mechanical ventilation, is a relatively simple technique, and can be initiated safely and effectively in the delivery room. Combining nCPAP with noninvasive, preferably aerosol, delivery of synthetic lung surfactant promises to improve respiratory outcomes for preterm infants, especially in low- and middle-income countries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1