SMAC 模拟物 BV6 与 mTOR 抑制剂协同作用,可提高卵巢癌患者对顺铂的敏感性。

IF 1.8 4区 医学 Q3 ONCOLOGY Anti-Cancer Drugs Pub Date : 2024-10-16 DOI:10.1097/CAD.0000000000001664
Qi Chen, Hong Zhang
{"title":"SMAC 模拟物 BV6 与 mTOR 抑制剂协同作用,可提高卵巢癌患者对顺铂的敏感性。","authors":"Qi Chen, Hong Zhang","doi":"10.1097/CAD.0000000000001664","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined. Bagg Albino color nude mice were treated with DDP or BV6 alone or in combination, or BV6 + DDP + Rapamycin. The effects of different treatments on ovarian cancer cells and tumor growth were evaluated in vivo and in vitro. Proteomics and bioinformatics analysis revealed significant changes of protein kinase (AKT)/mTOR pathway. Consistently, western blot data indicated that AKT/mTOR axis was gradually activated in BV6-treated ovarian cancer cells and attenuated the cytotoxic effect of BV6. Functional assays showed that DDP or BV6 treatment alone significantly enhanced the sensitivity and inhibited the migration of ovarian cancer cells, but without any synergistic effects. In addition, combination with BV6 and mTOR inhibitor Rapamycin significantly decreased cell viability and inhibited migration of ovarian cancer cells exposed to DDP. Consistently, the xenograft model showed that co-treatment with Rapamycin with BV6 had significantly suppressed tumor growth and metastasis. Our study demonstrated that SMAC analogue BV6 exhibits a strong anticancer effect on ovarian cancer in vitro and in vivo. Combination with Rapamycin overcomes the activation of mTOR pathway by BV6 and increases the chemosensitivity to DDP. These data suggest a potential application of triple combination with DDP + BV6 + Rapamycin in clinical management of ovarian cancer.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMAC mimetic BV6 acts in synergy with mTOR inhibitor to increase cisplatin sensitivity in ovarian cancer.\",\"authors\":\"Qi Chen, Hong Zhang\",\"doi\":\"10.1097/CAD.0000000000001664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined. Bagg Albino color nude mice were treated with DDP or BV6 alone or in combination, or BV6 + DDP + Rapamycin. The effects of different treatments on ovarian cancer cells and tumor growth were evaluated in vivo and in vitro. Proteomics and bioinformatics analysis revealed significant changes of protein kinase (AKT)/mTOR pathway. Consistently, western blot data indicated that AKT/mTOR axis was gradually activated in BV6-treated ovarian cancer cells and attenuated the cytotoxic effect of BV6. Functional assays showed that DDP or BV6 treatment alone significantly enhanced the sensitivity and inhibited the migration of ovarian cancer cells, but without any synergistic effects. In addition, combination with BV6 and mTOR inhibitor Rapamycin significantly decreased cell viability and inhibited migration of ovarian cancer cells exposed to DDP. Consistently, the xenograft model showed that co-treatment with Rapamycin with BV6 had significantly suppressed tumor growth and metastasis. Our study demonstrated that SMAC analogue BV6 exhibits a strong anticancer effect on ovarian cancer in vitro and in vivo. Combination with Rapamycin overcomes the activation of mTOR pathway by BV6 and increases the chemosensitivity to DDP. These data suggest a potential application of triple combination with DDP + BV6 + Rapamycin in clinical management of ovarian cancer.</p>\",\"PeriodicalId\":7969,\"journal\":{\"name\":\"Anti-Cancer Drugs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Cancer Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CAD.0000000000001664\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是观察线粒体衍生的第二种活化酶(SMAC)模拟物二价SMAC模拟物(BV6)与雷帕霉素靶点(mTOR)抑制剂联合使用对顺铂(DDP)敏感性的抗肿瘤效果。卵巢癌细胞暴露于顺铂、BV6、DDP + BV6 和 DDP + BV6 + mTOR 抑制剂雷帕霉素。利用蛋白质组学和生物信息学,确定了卵巢癌的蛋白质表达谱。对巴格白化色裸鼠单独或联合使用 DDP 或 BV6,或 BV6 + DDP + 雷帕霉素进行治疗。在体内和体外评估了不同治疗方法对卵巢癌细胞和肿瘤生长的影响。蛋白质组学和生物信息学分析表明,蛋白激酶(AKT)/mTOR通路发生了显著变化。Western印迹数据表明,AKT/mTOR轴在BV6处理的卵巢癌细胞中逐渐被激活,并减弱了BV6的细胞毒性作用。功能试验表明,单独使用 DDP 或 BV6 能显著提高卵巢癌细胞的敏感性并抑制其迁移,但没有任何协同作用。此外,与 BV6 和 mTOR 抑制剂雷帕霉素联用可明显降低暴露于 DDP 的卵巢癌细胞的存活率并抑制其迁移。同样,异种移植模型显示,雷帕霉素与 BV6 联合治疗可明显抑制肿瘤的生长和转移。我们的研究表明,SMAC 类似物 BV6 在体外和体内对卵巢癌都有很强的抗癌作用。与雷帕霉素联用可克服 BV6 对 mTOR 通路的激活,并增加对 DDP 的化疗敏感性。这些数据表明,DDP + BV6 + 雷帕霉素三联疗法有望应用于卵巢癌的临床治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMAC mimetic BV6 acts in synergy with mTOR inhibitor to increase cisplatin sensitivity in ovarian cancer.

The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined. Bagg Albino color nude mice were treated with DDP or BV6 alone or in combination, or BV6 + DDP + Rapamycin. The effects of different treatments on ovarian cancer cells and tumor growth were evaluated in vivo and in vitro. Proteomics and bioinformatics analysis revealed significant changes of protein kinase (AKT)/mTOR pathway. Consistently, western blot data indicated that AKT/mTOR axis was gradually activated in BV6-treated ovarian cancer cells and attenuated the cytotoxic effect of BV6. Functional assays showed that DDP or BV6 treatment alone significantly enhanced the sensitivity and inhibited the migration of ovarian cancer cells, but without any synergistic effects. In addition, combination with BV6 and mTOR inhibitor Rapamycin significantly decreased cell viability and inhibited migration of ovarian cancer cells exposed to DDP. Consistently, the xenograft model showed that co-treatment with Rapamycin with BV6 had significantly suppressed tumor growth and metastasis. Our study demonstrated that SMAC analogue BV6 exhibits a strong anticancer effect on ovarian cancer in vitro and in vivo. Combination with Rapamycin overcomes the activation of mTOR pathway by BV6 and increases the chemosensitivity to DDP. These data suggest a potential application of triple combination with DDP + BV6 + Rapamycin in clinical management of ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-Cancer Drugs
Anti-Cancer Drugs 医学-药学
CiteScore
3.80
自引率
0.00%
发文量
244
审稿时长
3 months
期刊介绍: Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
期刊最新文献
DEPDC1 affects autophagy-dependent glycolysis levels in human osteosarcoma cells by modulating RAS/ERK signaling through TTK. Differential functionality of fluoropyrimidine nucleosides for safe cancer therapy. Interference with PLA2G16 promotes cell cycle arrest and apoptosis and inhibits the reprogramming of glucose metabolism in multiple myeloma cells by modulating the Hippo/YAP signaling pathway. Varied toxicity profile of intravitreal melphalan in two retinoblastoma eyes. BAP1 loss confers sensitivity to bromodomain and extra-terminal inhibitors in renal cell carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1