Angela Gonella-Diaza, Mariana Sponchiado, Moana Rodrigues França, Lihe Liu, Guilherme Pugliesi, Edson Guimarães Lo Turco, Francisco Peñagaricano, Mario Binelli
{"title":"输卵管液的代谢组学组成受阉牛围排卵期激素环境的控制。","authors":"Angela Gonella-Diaza, Mariana Sponchiado, Moana Rodrigues França, Lihe Liu, Guilherme Pugliesi, Edson Guimarães Lo Turco, Francisco Peñagaricano, Mario Binelli","doi":"10.1093/biolre/ioae153","DOIUrl":null,"url":null,"abstract":"<p><p>In cattle, oviductal function is controlled by the ovarian sex-steroids estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex-steroid milieus differentially impacts the oviductal fluid composition. Estrous cycles of non-lactating, multiparous Nelore cows were pre-synchronized and then synchronized with a protocol designed two induce ovulation of large (LF group) or small (SF group) follciles. Larger preovulatory follicle (day 0) and corpora lutea (day 4) and greater estradiol (day 0) and progesterone (day 4) concentrations were observed in the LF group. Four days after induced ovulation, oviductal fluid was collected post-mortem. Quantitative mass spectrometry was used to determine the concentration of amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, hexoses, prostaglandins and related compounds. Multivariate analyses (OPLS-DA) were conducted to compare the metabolomic signatures of oviductal fluids. Correlation network analysis was conducted to measure the strength and hierarchy of associations among metabolites. Of the 205 metabolites quantified, 171 were detected in at least 50% of the samples and were included in further data analysis. After OPLS-DA analysis, samples of the LF and SF were divided clearly into two non-overlapping clusters. Twenty metabolites had different or tended to have different concentrations in the oviductal fluid when comparing groups. Seven of these 20 analytes had greater concentrations in LF cows. Moreover, total sum of biogenic amines, phosphatidylcholines, and prostaglandins were higher in the SF group. The correlation network showed that the LF group metabolites' concentrations were highly intercorrelated, which was not observed in the SF group. We concluded that the periovulatory endocrine milieu regulates the composition of the oviductal fluid.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The metabolomic composition of the oviductal fluid is controlled by the periovulatory hormonal context in Bos indicus cows.\",\"authors\":\"Angela Gonella-Diaza, Mariana Sponchiado, Moana Rodrigues França, Lihe Liu, Guilherme Pugliesi, Edson Guimarães Lo Turco, Francisco Peñagaricano, Mario Binelli\",\"doi\":\"10.1093/biolre/ioae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cattle, oviductal function is controlled by the ovarian sex-steroids estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex-steroid milieus differentially impacts the oviductal fluid composition. Estrous cycles of non-lactating, multiparous Nelore cows were pre-synchronized and then synchronized with a protocol designed two induce ovulation of large (LF group) or small (SF group) follciles. Larger preovulatory follicle (day 0) and corpora lutea (day 4) and greater estradiol (day 0) and progesterone (day 4) concentrations were observed in the LF group. Four days after induced ovulation, oviductal fluid was collected post-mortem. Quantitative mass spectrometry was used to determine the concentration of amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, hexoses, prostaglandins and related compounds. Multivariate analyses (OPLS-DA) were conducted to compare the metabolomic signatures of oviductal fluids. Correlation network analysis was conducted to measure the strength and hierarchy of associations among metabolites. Of the 205 metabolites quantified, 171 were detected in at least 50% of the samples and were included in further data analysis. After OPLS-DA analysis, samples of the LF and SF were divided clearly into two non-overlapping clusters. Twenty metabolites had different or tended to have different concentrations in the oviductal fluid when comparing groups. Seven of these 20 analytes had greater concentrations in LF cows. Moreover, total sum of biogenic amines, phosphatidylcholines, and prostaglandins were higher in the SF group. The correlation network showed that the LF group metabolites' concentrations were highly intercorrelated, which was not observed in the SF group. We concluded that the periovulatory endocrine milieu regulates the composition of the oviductal fluid.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae153\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae153","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
牛的输卵管功能受卵巢性类固醇雌二醇和孕酮的控制。在这里,我们测试了一个假设,即暴露于不同的性类固醇环境会对输卵管液成分产生不同的影响。对非哺乳期、多胎Nelore奶牛的发情周期进行预同步,然后用设计为诱导大卵泡(LF组)或小卵泡(SF组)排卵的方案进行同步。观察到LF组排卵前卵泡(第0天)和黄体(第4天)较大,雌二醇(第0天)和孕酮(第4天)浓度较高。在诱导排卵四天后,对输卵管液进行尸检。采用定量质谱法测定氨基酸、生物胺、酰基肉碱、磷脂酰胆碱、溶血磷脂酰胆碱、鞘磷脂、己糖、前列腺素和相关化合物的浓度。通过多变量分析(OPLS-DA)比较了输卵管液的代谢组学特征。还进行了相关网络分析,以衡量代谢物之间关联的强度和层次。在量化的 205 种代谢物中,171 种在至少 50% 的样本中被检测到,并被纳入进一步的数据分析中。经过 OPLS-DA 分析,LF 和 SF 样本被明确划分为两个不重叠的群组。在对各组进行比较时,有 20 种代谢物在输卵管液中的浓度不同或趋于不同。在这20种分析物中,有7种在LF奶牛中浓度较高。此外,SF组的生物胺、磷脂酰胆碱和前列腺素的总和较高。相关网络显示,LF 组代谢物的浓度高度相互关联,而 SF 组则没有这种现象。我们认为,围排卵期内分泌环境调节着输卵管液的成分。
The metabolomic composition of the oviductal fluid is controlled by the periovulatory hormonal context in Bos indicus cows.
In cattle, oviductal function is controlled by the ovarian sex-steroids estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex-steroid milieus differentially impacts the oviductal fluid composition. Estrous cycles of non-lactating, multiparous Nelore cows were pre-synchronized and then synchronized with a protocol designed two induce ovulation of large (LF group) or small (SF group) follciles. Larger preovulatory follicle (day 0) and corpora lutea (day 4) and greater estradiol (day 0) and progesterone (day 4) concentrations were observed in the LF group. Four days after induced ovulation, oviductal fluid was collected post-mortem. Quantitative mass spectrometry was used to determine the concentration of amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, hexoses, prostaglandins and related compounds. Multivariate analyses (OPLS-DA) were conducted to compare the metabolomic signatures of oviductal fluids. Correlation network analysis was conducted to measure the strength and hierarchy of associations among metabolites. Of the 205 metabolites quantified, 171 were detected in at least 50% of the samples and were included in further data analysis. After OPLS-DA analysis, samples of the LF and SF were divided clearly into two non-overlapping clusters. Twenty metabolites had different or tended to have different concentrations in the oviductal fluid when comparing groups. Seven of these 20 analytes had greater concentrations in LF cows. Moreover, total sum of biogenic amines, phosphatidylcholines, and prostaglandins were higher in the SF group. The correlation network showed that the LF group metabolites' concentrations were highly intercorrelated, which was not observed in the SF group. We concluded that the periovulatory endocrine milieu regulates the composition of the oviductal fluid.