年龄和性别在非线性稀释调整定点尿砷中的作用。

IF 2.2 4区 医学 Q2 UROLOGY & NEPHROLOGY BMC Nephrology Pub Date : 2024-10-13 DOI:10.1186/s12882-024-03758-w
Thomas Clemens Carmine
{"title":"年龄和性别在非线性稀释调整定点尿砷中的作用。","authors":"Thomas Clemens Carmine","doi":"10.1186/s12882-024-03758-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous research introduced V-PFCRC as an effective spot urinary dilution adjustment method for various metal analytes, including the major environmental toxin arsenic. V-PFCRC normalizes analytes to 1 g/L creatinine (CRN) by adopting more advanced power-functional corrective equations accounting for variation in exposure level. This study expands on previous work by examining the impacts of age and sex on corrective functions.</p><p><strong>Methods: </strong>Literature review of the effects of sex and age on urinary dilution and the excretion of CRN and arsenic. Data analysis included a Data Set 1 of 5,752 urine samples and a partly overlapping Data Set 2 of 1,154 combined EDTA blood and urine samples. Both sets were classified into age bands, and the means, medians, and interquartile ranges for CRN and TWuAs in uncorrected (UC), conventionally CRN-corrected (CCRC), simple power-functional (S-PFCRC), sex-aggregated (V-PFCRC SA), and sex-differentiated V-PFCRC SD modes were compared. Correlation analyses assessed residual relationships between CRN, TWuAs, and age. V-PFCRC functions were compared across three numerically similar age groups and both sexes. The efficacy of systemic dilution adjustment error compensation was evaluated through power-functional regression analysis of residual CRN and the association between arsenic in blood and all tested urinary result modes.</p><p><strong>Results: </strong>Significant sex differences in UC and blood were neutralized by CCRC and reduced by V-PFCRC. Age showed a positive association with blood arsenic and TWuAs in all result modes, indicating factual increments in exposure. Sex-differentiated V-PFCRC best matched the sex-age kinetics of blood arsenic. V-PFCRC formulas varied by sex and age and appeared to reflect urinary osmolality sex-age-kinetics reported in previous research. V-PFCRC minimized residual biases of CRN on TWuAs across all age groups and sexes, demonstrating improved standardization efficacy compared to UC and CCRC arsenic.</p><p><strong>Interpretation: </strong>Sex differences in UC and CCRC arsenic are primarily attributable to urinary dilution and are effectively compensated by V-PFCRC. While the sex and age influence on V-PFCRC formulas align with sex- and age-specific urinary osmolality and assumed baseline vasopressor activities, their impact on correction validity for entire collectives is minimal.</p><p><strong>Conclusion: </strong>The V-PFCRC method offers a robust correction for urinary arsenic dilution, significantly reducing systemic dilution adjustment errors. Its application in various demographic contexts enhances the accuracy of urinary biomarker assessments, benefiting clinical and epidemiological research. V-PFCRC effectively compensates for sex differences in urinary arsenic. Age-related increases in TWuAs are exposure-related and should be additionally accounted for by algebraic normalization, covariate models, or standard range adjustments.</p>","PeriodicalId":9089,"journal":{"name":"BMC Nephrology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475607/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of age and sex in non-linear dilution adjustment of spot urine arsenic.\",\"authors\":\"Thomas Clemens Carmine\",\"doi\":\"10.1186/s12882-024-03758-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous research introduced V-PFCRC as an effective spot urinary dilution adjustment method for various metal analytes, including the major environmental toxin arsenic. V-PFCRC normalizes analytes to 1 g/L creatinine (CRN) by adopting more advanced power-functional corrective equations accounting for variation in exposure level. This study expands on previous work by examining the impacts of age and sex on corrective functions.</p><p><strong>Methods: </strong>Literature review of the effects of sex and age on urinary dilution and the excretion of CRN and arsenic. Data analysis included a Data Set 1 of 5,752 urine samples and a partly overlapping Data Set 2 of 1,154 combined EDTA blood and urine samples. Both sets were classified into age bands, and the means, medians, and interquartile ranges for CRN and TWuAs in uncorrected (UC), conventionally CRN-corrected (CCRC), simple power-functional (S-PFCRC), sex-aggregated (V-PFCRC SA), and sex-differentiated V-PFCRC SD modes were compared. Correlation analyses assessed residual relationships between CRN, TWuAs, and age. V-PFCRC functions were compared across three numerically similar age groups and both sexes. The efficacy of systemic dilution adjustment error compensation was evaluated through power-functional regression analysis of residual CRN and the association between arsenic in blood and all tested urinary result modes.</p><p><strong>Results: </strong>Significant sex differences in UC and blood were neutralized by CCRC and reduced by V-PFCRC. Age showed a positive association with blood arsenic and TWuAs in all result modes, indicating factual increments in exposure. Sex-differentiated V-PFCRC best matched the sex-age kinetics of blood arsenic. V-PFCRC formulas varied by sex and age and appeared to reflect urinary osmolality sex-age-kinetics reported in previous research. V-PFCRC minimized residual biases of CRN on TWuAs across all age groups and sexes, demonstrating improved standardization efficacy compared to UC and CCRC arsenic.</p><p><strong>Interpretation: </strong>Sex differences in UC and CCRC arsenic are primarily attributable to urinary dilution and are effectively compensated by V-PFCRC. While the sex and age influence on V-PFCRC formulas align with sex- and age-specific urinary osmolality and assumed baseline vasopressor activities, their impact on correction validity for entire collectives is minimal.</p><p><strong>Conclusion: </strong>The V-PFCRC method offers a robust correction for urinary arsenic dilution, significantly reducing systemic dilution adjustment errors. Its application in various demographic contexts enhances the accuracy of urinary biomarker assessments, benefiting clinical and epidemiological research. V-PFCRC effectively compensates for sex differences in urinary arsenic. Age-related increases in TWuAs are exposure-related and should be additionally accounted for by algebraic normalization, covariate models, or standard range adjustments.</p>\",\"PeriodicalId\":9089,\"journal\":{\"name\":\"BMC Nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12882-024-03758-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12882-024-03758-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:之前的研究介绍了 V-PFCRC 作为一种有效的定点尿液稀释调整方法,可用于包括主要环境毒素砷在内的多种金属分析物。V-PFCRC 采用更先进的幂函数修正方程,考虑到暴露水平的变化,将分析物归一化为 1 克/升肌酐 (CRN)。本研究在以往工作的基础上,进一步研究了年龄和性别对校正功能的影响:文献综述:性别和年龄对尿液稀释以及 CRN 和砷排泄的影响。数据分析包括由 5,752 份尿液样本组成的数据集 1 和由 1,154 份 EDTA 血液和尿液组合样本组成的部分重叠数据集 2。两组数据均按年龄段分类,并比较了未校正(UC)、传统 CRN 校正(CCRC)、简单幂函数(S-PFCRC)、性别分类(V-PFCRC SA)和性别分类 V-PFCRC SD 模式中 CRN 和 TWuAs 的平均值、中位数和四分位数间范围。相关分析评估了 CRN、TWuAs 和年龄之间的残差关系。比较了三个数字相似的年龄组和两个性别的 V-PFCRC 功能。通过对残余 CRN 以及血液中的砷与所有测试尿液结果模式之间的关联进行幂函数回归分析,评估了系统稀释调整误差补偿的功效:UC 和血液中的显著性别差异被 CCRC 中和,被 V-PFCRC 减少。在所有结果模式中,年龄与血砷和总膳食砷呈正相关,这表明暴露量在不断增加。按性别区分的 V-PFCRC 最符合血液砷的性别-年龄动力学。V-PFCRC 公式因性别和年龄而异,似乎反映了以往研究中报告的尿渗透压性别-年龄动力学。与 UC 和 CCRC 砷相比,V-PFCRC 最大程度地减少了 CRN 在所有年龄组和性别的 TWuAs 上的残余偏差,显示出更好的标准化效果:UC和CCRC砷的性别差异主要归因于尿液稀释,V-PFCRC可有效弥补这一差异。虽然性别和年龄对 V-PFCRC 公式的影响与特定性别和年龄的尿渗透压和假定的基线血管舒张活性一致,但它们对整个集体的校正有效性影响很小:结论:V-PFCRC 方法可对尿砷稀释进行稳健校正,显著减少系统稀释调整误差。它在各种人口统计环境中的应用提高了尿液生物标志物评估的准确性,有利于临床和流行病学研究。V-PFCRC 可有效补偿尿砷的性别差异。与年龄相关的 TWuAs 增加与暴露有关,应通过代数归一化、协变量模型或标准范围调整加以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of age and sex in non-linear dilution adjustment of spot urine arsenic.

Background: Previous research introduced V-PFCRC as an effective spot urinary dilution adjustment method for various metal analytes, including the major environmental toxin arsenic. V-PFCRC normalizes analytes to 1 g/L creatinine (CRN) by adopting more advanced power-functional corrective equations accounting for variation in exposure level. This study expands on previous work by examining the impacts of age and sex on corrective functions.

Methods: Literature review of the effects of sex and age on urinary dilution and the excretion of CRN and arsenic. Data analysis included a Data Set 1 of 5,752 urine samples and a partly overlapping Data Set 2 of 1,154 combined EDTA blood and urine samples. Both sets were classified into age bands, and the means, medians, and interquartile ranges for CRN and TWuAs in uncorrected (UC), conventionally CRN-corrected (CCRC), simple power-functional (S-PFCRC), sex-aggregated (V-PFCRC SA), and sex-differentiated V-PFCRC SD modes were compared. Correlation analyses assessed residual relationships between CRN, TWuAs, and age. V-PFCRC functions were compared across three numerically similar age groups and both sexes. The efficacy of systemic dilution adjustment error compensation was evaluated through power-functional regression analysis of residual CRN and the association between arsenic in blood and all tested urinary result modes.

Results: Significant sex differences in UC and blood were neutralized by CCRC and reduced by V-PFCRC. Age showed a positive association with blood arsenic and TWuAs in all result modes, indicating factual increments in exposure. Sex-differentiated V-PFCRC best matched the sex-age kinetics of blood arsenic. V-PFCRC formulas varied by sex and age and appeared to reflect urinary osmolality sex-age-kinetics reported in previous research. V-PFCRC minimized residual biases of CRN on TWuAs across all age groups and sexes, demonstrating improved standardization efficacy compared to UC and CCRC arsenic.

Interpretation: Sex differences in UC and CCRC arsenic are primarily attributable to urinary dilution and are effectively compensated by V-PFCRC. While the sex and age influence on V-PFCRC formulas align with sex- and age-specific urinary osmolality and assumed baseline vasopressor activities, their impact on correction validity for entire collectives is minimal.

Conclusion: The V-PFCRC method offers a robust correction for urinary arsenic dilution, significantly reducing systemic dilution adjustment errors. Its application in various demographic contexts enhances the accuracy of urinary biomarker assessments, benefiting clinical and epidemiological research. V-PFCRC effectively compensates for sex differences in urinary arsenic. Age-related increases in TWuAs are exposure-related and should be additionally accounted for by algebraic normalization, covariate models, or standard range adjustments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Nephrology
BMC Nephrology UROLOGY & NEPHROLOGY-
CiteScore
4.30
自引率
0.00%
发文量
375
审稿时长
3-8 weeks
期刊介绍: BMC Nephrology is an open access journal publishing original peer-reviewed research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Centre-level fluid management practices in the BISTRO trial and their lack of association with participant fluid status and blood pressure in non-anuric haemodialysis patients. Impact of COVID-19 on nephropathy in diabetes mellitus type-II patients: a systematic literature review and meta-analysis. Association between different proportions of crescents and the progression of IgA nephropathy (IgAN): a systematic review and meta-analysis. Decoy cells detected in the urine of a patient with complex karyotype Myelodysplastic neoplasms who underwent umbilical cord blood transplantation: a case report. Internal hernia following laparoendoscopic single site surgery: a case report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1