Beomsu Shin, You Jin Oh, Jonghun Kim, Sung Goo Park, Kyung Soo Lee, Ho Yun Lee
{"title":"间质性肺病的 CT 表型与血清生物标记物之间的相关性。","authors":"Beomsu Shin, You Jin Oh, Jonghun Kim, Sung Goo Park, Kyung Soo Lee, Ho Yun Lee","doi":"10.1186/s12890-024-03344-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The quantitative analysis of computed tomography (CT) and Krebs von den Lungen-6 (KL-6) serum level has gained importance in the diagnosis, monitoring, and prognostication of interstitial lung disease (ILD). However, the associations between quantitative analysis of CT and serum KL-6 level remain poorly understood.</p><p><strong>Methods: </strong>In this retrospective observational study conducted at tertiary hospital between June 2020 and March 2022, quantitative analysis of CT was performed using the deep learning-based method including reticulation, ground glass opacity (GGO), honeycombing, and consolidation. We investigated the associations between CT-based phenotypes and serum KL-6 measured within three months of the CT scan. Furthermore, we evaluated the performance of the combined CT-based phenotypes and KL-6 levels in predicting hospitalizations due to respiratory reasons of ILD patients.</p><p><strong>Results: </strong>A total of 131 ILD patients (104 males) with a median age of 67 years were included in this study. Reticulation, GGO, honeycombing, and consolidation extents showed a positive correlation with KL-6 levels. [Reticulation, correlation coefficient (r) = 0.567, p < 0.001; GGO, r = 0.355, p < 0.001; honeycombing, r = 0.174, p = 0.046; and consolidation, r = 0.446, p < 0.001]. Additionally, the area under the ROC of the combined reticulation and KL-6 for hospitalizations due to respiratory reasons was 0.810 (p < 0.001).</p><p><strong>Conclusions: </strong>Quantitative analysis of CT features and serum KL-6 levels ascertained a positive correlation between the two. In addition, the combination of reticulation and KL-6 shows potential for predicting hospitalizations of ILD patients due to respiratory causes. The combination of reticulation, focusing on phenotypic change in lung parenchyma, and KL-6, as an indicator of lung injury extent, could be helpful for monitoring and predicting the prognosis of various types of ILD.</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"24 1","pages":"523"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correlation between CT-based phenotypes and serum biomarker in interstitial lung diseases.\",\"authors\":\"Beomsu Shin, You Jin Oh, Jonghun Kim, Sung Goo Park, Kyung Soo Lee, Ho Yun Lee\",\"doi\":\"10.1186/s12890-024-03344-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The quantitative analysis of computed tomography (CT) and Krebs von den Lungen-6 (KL-6) serum level has gained importance in the diagnosis, monitoring, and prognostication of interstitial lung disease (ILD). However, the associations between quantitative analysis of CT and serum KL-6 level remain poorly understood.</p><p><strong>Methods: </strong>In this retrospective observational study conducted at tertiary hospital between June 2020 and March 2022, quantitative analysis of CT was performed using the deep learning-based method including reticulation, ground glass opacity (GGO), honeycombing, and consolidation. We investigated the associations between CT-based phenotypes and serum KL-6 measured within three months of the CT scan. Furthermore, we evaluated the performance of the combined CT-based phenotypes and KL-6 levels in predicting hospitalizations due to respiratory reasons of ILD patients.</p><p><strong>Results: </strong>A total of 131 ILD patients (104 males) with a median age of 67 years were included in this study. Reticulation, GGO, honeycombing, and consolidation extents showed a positive correlation with KL-6 levels. [Reticulation, correlation coefficient (r) = 0.567, p < 0.001; GGO, r = 0.355, p < 0.001; honeycombing, r = 0.174, p = 0.046; and consolidation, r = 0.446, p < 0.001]. Additionally, the area under the ROC of the combined reticulation and KL-6 for hospitalizations due to respiratory reasons was 0.810 (p < 0.001).</p><p><strong>Conclusions: </strong>Quantitative analysis of CT features and serum KL-6 levels ascertained a positive correlation between the two. In addition, the combination of reticulation and KL-6 shows potential for predicting hospitalizations of ILD patients due to respiratory causes. The combination of reticulation, focusing on phenotypic change in lung parenchyma, and KL-6, as an indicator of lung injury extent, could be helpful for monitoring and predicting the prognosis of various types of ILD.</p>\",\"PeriodicalId\":9148,\"journal\":{\"name\":\"BMC Pulmonary Medicine\",\"volume\":\"24 1\",\"pages\":\"523\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pulmonary Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12890-024-03344-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-024-03344-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Correlation between CT-based phenotypes and serum biomarker in interstitial lung diseases.
Background: The quantitative analysis of computed tomography (CT) and Krebs von den Lungen-6 (KL-6) serum level has gained importance in the diagnosis, monitoring, and prognostication of interstitial lung disease (ILD). However, the associations between quantitative analysis of CT and serum KL-6 level remain poorly understood.
Methods: In this retrospective observational study conducted at tertiary hospital between June 2020 and March 2022, quantitative analysis of CT was performed using the deep learning-based method including reticulation, ground glass opacity (GGO), honeycombing, and consolidation. We investigated the associations between CT-based phenotypes and serum KL-6 measured within three months of the CT scan. Furthermore, we evaluated the performance of the combined CT-based phenotypes and KL-6 levels in predicting hospitalizations due to respiratory reasons of ILD patients.
Results: A total of 131 ILD patients (104 males) with a median age of 67 years were included in this study. Reticulation, GGO, honeycombing, and consolidation extents showed a positive correlation with KL-6 levels. [Reticulation, correlation coefficient (r) = 0.567, p < 0.001; GGO, r = 0.355, p < 0.001; honeycombing, r = 0.174, p = 0.046; and consolidation, r = 0.446, p < 0.001]. Additionally, the area under the ROC of the combined reticulation and KL-6 for hospitalizations due to respiratory reasons was 0.810 (p < 0.001).
Conclusions: Quantitative analysis of CT features and serum KL-6 levels ascertained a positive correlation between the two. In addition, the combination of reticulation and KL-6 shows potential for predicting hospitalizations of ILD patients due to respiratory causes. The combination of reticulation, focusing on phenotypic change in lung parenchyma, and KL-6, as an indicator of lung injury extent, could be helpful for monitoring and predicting the prognosis of various types of ILD.
期刊介绍:
BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.