提供多学科 ILD 诊断(PROMISE)研究--日本国家登记处的研究设计,促进互动式在线多学科讨论诊断。

IF 2.6 3区 医学 Q2 RESPIRATORY SYSTEM BMC Pulmonary Medicine Pub Date : 2024-10-14 DOI:10.1186/s12890-024-03232-1
Yasuhiro Kondoh, Taiki Furukawa, Hironao Hozumi, Takafumi Suda, Ryoko Egashira, Takeshi Jokoh, Junya Fukuoka, Masataka Kuwana, Ryo Teramachi, Tomoyuki Fujisawa, Yoshinori Hasegawa, Takashi Ogura, Yasunari Miyazaki, Shintaro Oyama, Satoshi Teramukai, Go Horiguchi, Akari Naito, Yoshikazu Inoue, Kazuya Ichikado, Masashi Bando, Hiromi Tomioka, Yasuhiko Nishioka, Hirofumi Chiba, Masahito Ebina, Yoichi Nakanishi, Kikue Satoh, Yoshimune Shiratori, Naozumi Hashimoto, Makoto Ishii
{"title":"提供多学科 ILD 诊断(PROMISE)研究--日本国家登记处的研究设计,促进互动式在线多学科讨论诊断。","authors":"Yasuhiro Kondoh, Taiki Furukawa, Hironao Hozumi, Takafumi Suda, Ryoko Egashira, Takeshi Jokoh, Junya Fukuoka, Masataka Kuwana, Ryo Teramachi, Tomoyuki Fujisawa, Yoshinori Hasegawa, Takashi Ogura, Yasunari Miyazaki, Shintaro Oyama, Satoshi Teramukai, Go Horiguchi, Akari Naito, Yoshikazu Inoue, Kazuya Ichikado, Masashi Bando, Hiromi Tomioka, Yasuhiko Nishioka, Hirofumi Chiba, Masahito Ebina, Yoichi Nakanishi, Kikue Satoh, Yoshimune Shiratori, Naozumi Hashimoto, Makoto Ishii","doi":"10.1186/s12890-024-03232-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multidisciplinary discussion (MDD), in which physicians, radiologists, and pathologists communicate and diagnose together, has been reported to improve diagnostic accuracy compared to diagnoses made solely by physicians. However, even among experts, diagnostic concordance of MDD is not always good, and some patients may not receive a specific diagnosis due to insufficient findings. A provisional diagnosis based on the ontology with a diagnostic confidence level has recently been proposed. Additionally, we developed an artificial intelligence model to differentiate idiopathic pulmonary fibrosis (IPF) from other chronic interstitial lung diseases (ILD)s, which needs validation in a broader population.</p><p><strong>Methods: </strong>This prospective nationwide ILD registry has recruited patients with newly diagnosed ILD at the referral respiratory hospitals in Japan and provides rapid MDD diagnoses and treatment recommendations through a central online MDD platform with a 3-year follow-up period. A modified diagnostic ontology is used. If no diagnosis reaches more than 50% certainty, the diagnosis is unclassifiable ILD. If multiple diseases are expected, the diagnosis with a high probability takes precedence. If the confidence levels for the top two possible diagnoses are equal, the diagnosis can be unclassifiable. The registry uses tentative diagnostic criteria for nonspecific interstitial pneumonia with organising pneumonia and smoking-related ILD not otherwise specified as possible new entities. Central MDD diagnosticians review the clinical data, test results, radiology images, and pathological specimens on a dedicated website and conduct MDD diagnoses using online meetings with a cloud-based reporting system. This study aims to (1) provide MDD diagnoses with treatment recommendations; (2) determine the overall ILD rates in Japan; (3) clarify the reasons for unclassifiable ILDs; (4) evaluate possible new disease entities; (5) identify progressive phenotypes and create a clinical prediction model; (6) measure the agreement rate between institutional and central diagnoses in ILD referral and non-referral centres; (7) identify key factors for each specific ILD diagnosis; and (8) create a new disease classification system based on treatment strategies, including the use of antifibrotic drugs.</p><p><strong>Discussion: </strong>This study will provide ILD frequencies, including new entities, using central MDD on dedicated online systems, and develop a machine learning model for ILD diagnosis and prognosis prediction.</p><p><strong>Trial registration: </strong>UMIN-CTR Clinical Trial Registry (UMIN000040678).</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"24 1","pages":"511"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472475/pdf/","citationCount":"0","resultStr":"{\"title\":\"The providing multidisciplinary ILD diagnoses (PROMISE) study - study design of the national registry of Japan facilitating interactive online multidisciplinary discussion diagnosis.\",\"authors\":\"Yasuhiro Kondoh, Taiki Furukawa, Hironao Hozumi, Takafumi Suda, Ryoko Egashira, Takeshi Jokoh, Junya Fukuoka, Masataka Kuwana, Ryo Teramachi, Tomoyuki Fujisawa, Yoshinori Hasegawa, Takashi Ogura, Yasunari Miyazaki, Shintaro Oyama, Satoshi Teramukai, Go Horiguchi, Akari Naito, Yoshikazu Inoue, Kazuya Ichikado, Masashi Bando, Hiromi Tomioka, Yasuhiko Nishioka, Hirofumi Chiba, Masahito Ebina, Yoichi Nakanishi, Kikue Satoh, Yoshimune Shiratori, Naozumi Hashimoto, Makoto Ishii\",\"doi\":\"10.1186/s12890-024-03232-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multidisciplinary discussion (MDD), in which physicians, radiologists, and pathologists communicate and diagnose together, has been reported to improve diagnostic accuracy compared to diagnoses made solely by physicians. However, even among experts, diagnostic concordance of MDD is not always good, and some patients may not receive a specific diagnosis due to insufficient findings. A provisional diagnosis based on the ontology with a diagnostic confidence level has recently been proposed. Additionally, we developed an artificial intelligence model to differentiate idiopathic pulmonary fibrosis (IPF) from other chronic interstitial lung diseases (ILD)s, which needs validation in a broader population.</p><p><strong>Methods: </strong>This prospective nationwide ILD registry has recruited patients with newly diagnosed ILD at the referral respiratory hospitals in Japan and provides rapid MDD diagnoses and treatment recommendations through a central online MDD platform with a 3-year follow-up period. A modified diagnostic ontology is used. If no diagnosis reaches more than 50% certainty, the diagnosis is unclassifiable ILD. If multiple diseases are expected, the diagnosis with a high probability takes precedence. If the confidence levels for the top two possible diagnoses are equal, the diagnosis can be unclassifiable. The registry uses tentative diagnostic criteria for nonspecific interstitial pneumonia with organising pneumonia and smoking-related ILD not otherwise specified as possible new entities. Central MDD diagnosticians review the clinical data, test results, radiology images, and pathological specimens on a dedicated website and conduct MDD diagnoses using online meetings with a cloud-based reporting system. This study aims to (1) provide MDD diagnoses with treatment recommendations; (2) determine the overall ILD rates in Japan; (3) clarify the reasons for unclassifiable ILDs; (4) evaluate possible new disease entities; (5) identify progressive phenotypes and create a clinical prediction model; (6) measure the agreement rate between institutional and central diagnoses in ILD referral and non-referral centres; (7) identify key factors for each specific ILD diagnosis; and (8) create a new disease classification system based on treatment strategies, including the use of antifibrotic drugs.</p><p><strong>Discussion: </strong>This study will provide ILD frequencies, including new entities, using central MDD on dedicated online systems, and develop a machine learning model for ILD diagnosis and prognosis prediction.</p><p><strong>Trial registration: </strong>UMIN-CTR Clinical Trial Registry (UMIN000040678).</p>\",\"PeriodicalId\":9148,\"journal\":{\"name\":\"BMC Pulmonary Medicine\",\"volume\":\"24 1\",\"pages\":\"511\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pulmonary Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12890-024-03232-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-024-03232-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

背景:多学科讨论(MDD)是由医生、放射科医生和病理学家共同交流和诊断,据报道,与仅由医生做出的诊断相比,多学科讨论可提高诊断的准确性。然而,即使在专家之间,MDD 诊断的一致性也并不总是很好,有些患者可能会因为检查结果不充分而得不到具体的诊断。最近有人提出了一种基于本体的临时诊断方法,并设定了诊断置信度。此外,我们还开发了一种人工智能模型来区分特发性肺纤维化(IPF)和其他慢性间质性肺病(ILD),该模型需要在更广泛的人群中进行验证:该前瞻性全国性 ILD 登记系统在日本呼吸科转诊医院招募了新诊断的 ILD 患者,并通过一个中央在线 MDD 平台提供快速 MDD 诊断和治疗建议,随访期为 3 年。采用的是经过修改的诊断本体。如果没有诊断的确定性超过 50%,则诊断为无法分类的 ILD。如果预计会出现多种疾病,则以概率高的诊断为准。如果前两种可能诊断的置信度相同,则诊断为不可分类。登记处将非特异性间质性肺炎伴有组织性肺炎和与吸烟相关的未另作说明的 ILD 作为可能的新病例使用暂定诊断标准。中央 MDD 诊断人员在专用网站上审查临床数据、检验结果、放射影像和病理标本,并通过云报告系统的在线会议进行 MDD 诊断。本研究旨在:(1) 提供 MDD 诊断和治疗建议;(2) 确定日本 ILD 的总体发病率;(3) 明确无法分类的 ILD 的原因;(4) 评估可能的新疾病实体;(5) 确定进展表型并创建临床预测模型;(6) 测量 ILD 转诊中心和非转诊中心的机构诊断与中心诊断之间的一致率;(7) 确定每种特定 ILD 诊断的关键因素;以及 (8) 根据治疗策略(包括抗纤维化药物的使用)创建新的疾病分类系统。讨论:该研究将在专用在线系统上使用中央MDD提供包括新实体在内的ILD频率,并开发用于ILD诊断和预后预测的机器学习模型:UMIN-CTR临床试验注册中心(UMIN000040678)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The providing multidisciplinary ILD diagnoses (PROMISE) study - study design of the national registry of Japan facilitating interactive online multidisciplinary discussion diagnosis.

Background: Multidisciplinary discussion (MDD), in which physicians, radiologists, and pathologists communicate and diagnose together, has been reported to improve diagnostic accuracy compared to diagnoses made solely by physicians. However, even among experts, diagnostic concordance of MDD is not always good, and some patients may not receive a specific diagnosis due to insufficient findings. A provisional diagnosis based on the ontology with a diagnostic confidence level has recently been proposed. Additionally, we developed an artificial intelligence model to differentiate idiopathic pulmonary fibrosis (IPF) from other chronic interstitial lung diseases (ILD)s, which needs validation in a broader population.

Methods: This prospective nationwide ILD registry has recruited patients with newly diagnosed ILD at the referral respiratory hospitals in Japan and provides rapid MDD diagnoses and treatment recommendations through a central online MDD platform with a 3-year follow-up period. A modified diagnostic ontology is used. If no diagnosis reaches more than 50% certainty, the diagnosis is unclassifiable ILD. If multiple diseases are expected, the diagnosis with a high probability takes precedence. If the confidence levels for the top two possible diagnoses are equal, the diagnosis can be unclassifiable. The registry uses tentative diagnostic criteria for nonspecific interstitial pneumonia with organising pneumonia and smoking-related ILD not otherwise specified as possible new entities. Central MDD diagnosticians review the clinical data, test results, radiology images, and pathological specimens on a dedicated website and conduct MDD diagnoses using online meetings with a cloud-based reporting system. This study aims to (1) provide MDD diagnoses with treatment recommendations; (2) determine the overall ILD rates in Japan; (3) clarify the reasons for unclassifiable ILDs; (4) evaluate possible new disease entities; (5) identify progressive phenotypes and create a clinical prediction model; (6) measure the agreement rate between institutional and central diagnoses in ILD referral and non-referral centres; (7) identify key factors for each specific ILD diagnosis; and (8) create a new disease classification system based on treatment strategies, including the use of antifibrotic drugs.

Discussion: This study will provide ILD frequencies, including new entities, using central MDD on dedicated online systems, and develop a machine learning model for ILD diagnosis and prognosis prediction.

Trial registration: UMIN-CTR Clinical Trial Registry (UMIN000040678).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Pulmonary Medicine
BMC Pulmonary Medicine RESPIRATORY SYSTEM-
CiteScore
4.40
自引率
3.20%
发文量
423
审稿时长
6-12 weeks
期刊介绍: BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
期刊最新文献
Impact of vitamin D on hyperoxic acute lung injury in neonatal mice. Significance of respiratory virus coinfection in children with Mycoplasma pneumoniae pneumonia. Proposal of a radiation-free screening protocol for early detection of interstitial lung involvement in seropositive and ACPA-positive rheumatoid arthritis. Electrical impedance tomography guided positive end-expiratory pressure titration in critically ill and surgical adult patients: a systematic review and meta-analysis. Predictive value of direct bilirubin and total bile acid in lung adenocarcinoma patients treated with EGFR-TKIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1