工作记忆神经相关性的分子机制。

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2024-10-21 DOI:10.1186/s12915-024-02039-0
Xiaotao Xu, Han Zhao, Yu Song, Huanhuan Cai, Wenming Zhao, Jin Tang, Jiajia Zhu, Yongqiang Yu
{"title":"工作记忆神经相关性的分子机制。","authors":"Xiaotao Xu, Han Zhao, Yu Song, Huanhuan Cai, Wenming Zhao, Jin Tang, Jiajia Zhu, Yongqiang Yu","doi":"10.1186/s12915-024-02039-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms.</p><p><strong>Results: </strong>Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine.</p><p><strong>Conclusions: </strong>These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"238"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms underlying the neural correlates of working memory.\",\"authors\":\"Xiaotao Xu, Han Zhao, Yu Song, Huanhuan Cai, Wenming Zhao, Jin Tang, Jiajia Zhu, Yongqiang Yu\",\"doi\":\"10.1186/s12915-024-02039-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms.</p><p><strong>Results: </strong>Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine.</p><p><strong>Conclusions: </strong>These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"22 1\",\"pages\":\"238\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02039-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02039-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:工作记忆(WM)是执行功能的核心组成部分,它依赖于一个专门的大脑系统来维持和存储短期信息。虽然广泛的神经影像学研究已经发现了一系列与工作记忆相关的分布式神经基底,但其潜在的分子机制仍然是个谜。本研究调查了 WM 的神经相关性及其潜在的分子机制:结果:我们对 502 名健康年轻人的静息态功能磁共振成像数据进行了体素分析,结果表明,更好的 WM 表现(更高的准确率和更短的 3 回任务反应时间)与左侧颞下回较低的功能连接密度(FCD)和左侧扣带回前皮层较高的功能连接密度有关。结合转录组-神经影像空间相关性和基于集合的基因类别富集分析发现,已确定的 WM 神经相关性与涉及重要皮层成分及其生物过程以及钠通道的不同基因类别的表达有关。跨区域空间相关性分析表明,WM 的神经相关因素与一系列神经递质(包括多巴胺、谷氨酸、5-羟色胺和乙酰胆碱)之间存在显著关联:这些发现可能有助于揭示 WM 神经相关性的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular mechanisms underlying the neural correlates of working memory.

Background: Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms.

Results: Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine.

Conclusions: These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Ancient genomes from the Tang Dynasty capital reveal the genetic legacy of trans-Eurasian communication at the eastern end of Silk Road. Eurasian spruce bark beetle detects lanierone using a highly expressed specialist odorant receptor, present in several functional sensillum types. Systemic and transcriptional response to intermittent fasting and fasting-mimicking diet in mice. Motif-guided identification of KRAS-interacting proteins. Long-term survival of asexual Zymoseptoria tritici spores in the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1