Runhao Wang , Chengxuan Chen , Yuan Liu , Mei Luo , Jingwen Yang , Yamei Chen , Lifei Ma , Liuqing Yang , Chunru Lin , Lixia Diao , Leng Han
{"title":"人类癌症中 snoRNAs 的药物基因组学和免疫格局。","authors":"Runhao Wang , Chengxuan Chen , Yuan Liu , Mei Luo , Jingwen Yang , Yamei Chen , Lifei Ma , Liuqing Yang , Chunru Lin , Lixia Diao , Leng Han","doi":"10.1016/j.canlet.2024.217304","DOIUrl":null,"url":null,"abstract":"<div><div>Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs primarily known for their role in the chemical modification of other RNAs. Recent studies suggested that snoRNAs may play a broader role in anti-cancer treatments such as targeted therapies and immunotherapies. Despite these insights, the comprehensive landscape of snoRNA associations with drug response and immunotherapy outcomes remains unexplored. In this study, we identified 79,448 and 75,185 associations between snoRNAs and drug response using data from VAEN and CancerRxTissue, respectively. Additionally, we discovered 29,199 associations between snoRNAs and immune checkpoint genes and 47,194 associations between snoRNAs and immune cell infiltrations. Sixteen snoRNAs were significantly correlated with immunotherapy objective response rate (ORR), and 92 snoRNAs showed significantly differential expression between cancers with high and low ORR. Furthermore, we identified 17 snoRNAs with significantly differential expression between cancer types with high and low immune-related adverse event (irAE) reporting odds ratio (ROR). Several snoRNAs, such as SNORD92, and SNORD83B, may represent promising biomarkers or therapeutic targets that needs further investigation. To facilitate further research, we developed a user-friendly portal, Pharmacogenomic and Immune Landscape of SnoRNA (PISNO, <span><span>https://hanlaboratory.com/PISNO/</span><svg><path></path></svg></span>), enabling researchers to visualize, browse, and download multi-dimensional data. This study highlights the potential of snoRNAs as biomarkers or therapeutic targets, paving the way for more effective and personalized anti-cancer treatments.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217304"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pharmacogenomic and immune landscape of snoRNAs in human cancers\",\"authors\":\"Runhao Wang , Chengxuan Chen , Yuan Liu , Mei Luo , Jingwen Yang , Yamei Chen , Lifei Ma , Liuqing Yang , Chunru Lin , Lixia Diao , Leng Han\",\"doi\":\"10.1016/j.canlet.2024.217304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs primarily known for their role in the chemical modification of other RNAs. Recent studies suggested that snoRNAs may play a broader role in anti-cancer treatments such as targeted therapies and immunotherapies. Despite these insights, the comprehensive landscape of snoRNA associations with drug response and immunotherapy outcomes remains unexplored. In this study, we identified 79,448 and 75,185 associations between snoRNAs and drug response using data from VAEN and CancerRxTissue, respectively. Additionally, we discovered 29,199 associations between snoRNAs and immune checkpoint genes and 47,194 associations between snoRNAs and immune cell infiltrations. Sixteen snoRNAs were significantly correlated with immunotherapy objective response rate (ORR), and 92 snoRNAs showed significantly differential expression between cancers with high and low ORR. Furthermore, we identified 17 snoRNAs with significantly differential expression between cancer types with high and low immune-related adverse event (irAE) reporting odds ratio (ROR). Several snoRNAs, such as SNORD92, and SNORD83B, may represent promising biomarkers or therapeutic targets that needs further investigation. To facilitate further research, we developed a user-friendly portal, Pharmacogenomic and Immune Landscape of SnoRNA (PISNO, <span><span>https://hanlaboratory.com/PISNO/</span><svg><path></path></svg></span>), enabling researchers to visualize, browse, and download multi-dimensional data. This study highlights the potential of snoRNAs as biomarkers or therapeutic targets, paving the way for more effective and personalized anti-cancer treatments.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"605 \",\"pages\":\"Article 217304\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383524006992\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524006992","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The pharmacogenomic and immune landscape of snoRNAs in human cancers
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs primarily known for their role in the chemical modification of other RNAs. Recent studies suggested that snoRNAs may play a broader role in anti-cancer treatments such as targeted therapies and immunotherapies. Despite these insights, the comprehensive landscape of snoRNA associations with drug response and immunotherapy outcomes remains unexplored. In this study, we identified 79,448 and 75,185 associations between snoRNAs and drug response using data from VAEN and CancerRxTissue, respectively. Additionally, we discovered 29,199 associations between snoRNAs and immune checkpoint genes and 47,194 associations between snoRNAs and immune cell infiltrations. Sixteen snoRNAs were significantly correlated with immunotherapy objective response rate (ORR), and 92 snoRNAs showed significantly differential expression between cancers with high and low ORR. Furthermore, we identified 17 snoRNAs with significantly differential expression between cancer types with high and low immune-related adverse event (irAE) reporting odds ratio (ROR). Several snoRNAs, such as SNORD92, and SNORD83B, may represent promising biomarkers or therapeutic targets that needs further investigation. To facilitate further research, we developed a user-friendly portal, Pharmacogenomic and Immune Landscape of SnoRNA (PISNO, https://hanlaboratory.com/PISNO/), enabling researchers to visualize, browse, and download multi-dimensional data. This study highlights the potential of snoRNAs as biomarkers or therapeutic targets, paving the way for more effective and personalized anti-cancer treatments.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.