Guangming Zhang , Anliu Zhao , Xiaolu Zhang , Miao Zeng , Huayuan Wei , Xu Yan , Jie Wang , Xijuan Jiang , Yongna Dai
{"title":"小胶质细胞中的糖酵解重编程:缺血性中风的潜在治疗靶点","authors":"Guangming Zhang , Anliu Zhao , Xiaolu Zhang , Miao Zeng , Huayuan Wei , Xu Yan , Jie Wang , Xijuan Jiang , Yongna Dai","doi":"10.1016/j.cellsig.2024.111466","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"124 ","pages":"Article 111466"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke\",\"authors\":\"Guangming Zhang , Anliu Zhao , Xiaolu Zhang , Miao Zeng , Huayuan Wei , Xu Yan , Jie Wang , Xijuan Jiang , Yongna Dai\",\"doi\":\"10.1016/j.cellsig.2024.111466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"124 \",\"pages\":\"Article 111466\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089865682400439X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089865682400439X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Glycolytic reprogramming in microglia: A potential therapeutic target for ischemic stroke
Ischemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke. Therefore, this study aims to investigate the roles and regulatory mechanisms involved in this process, aiming to identify a new therapeutic target or potential drug candidate.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.