Tingting Wu, Jing Chen, Sihui Shao, Yu Du, Fang Li, Hui Liu, Liping Sun, Xuehong Diao, Rong Wu
{"title":"使用传统超声结合对比度增强超声特征预测乳腺原位导管癌的微小浸润:一项双中心研究","authors":"Tingting Wu, Jing Chen, Sihui Shao, Yu Du, Fang Li, Hui Liu, Liping Sun, Xuehong Diao, Rong Wu","doi":"10.1016/j.clbc.2024.09.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop and validate a model based on conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) features to preoperatively predict microinvasion in breast ductal carcinoma in situ (DCIS).</p><p><strong>Patients and methods: </strong>Data from 163 patients with DCIS who underwent CUS and CEUS from the internal hospital was retrospectively collected and randomly apportioned into training and internal validation sets in a ratio of 7:3. External validation set included 56 patients with DCIS from the external hospital. Univariate and multivariate logistic regression analysis were performed to determine the independent risk factors associated with microinvasion. These factors were used to develop predictive models. The performance was evaluated through calibration, discrimination, and clinical utility.</p><p><strong>Results: </strong>Multivariate analysis indicated that centripetal enhancement direction (odds ratio [OR], 13.268; 95% confidence interval [CI], 3.687-47.746) and enhancement range enlarged on CEUS (OR, 4.876; 95% CI, 1.470-16.181), lesion size of ≥20 mm (OR, 3.265; 95% CI, 1.230-8.669) and calcification detected on CUS (OR, 5.174; 95% CI, 1.903-14.066) were independent risk factors associated with microinvasion. The nomogram incorporated the CUS and CEUS features achieved favorable discrimination (AUCs of 0.850, 0.848, and 0.879 for the training, internal and external validation datasets), with good calibration. The nomogram outperformed the CUS model and CEUS model (all P < .05). Decision curve analysis confirmed that the predictive nomogram was clinically useful.</p><p><strong>Conclusion: </strong>The nomogram based on CUS and CEUS features showed promising predictive value for the preoperative identification of microinvasion in patients with DCIS.</p>","PeriodicalId":10197,"journal":{"name":"Clinical breast cancer","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Microinvasion in Breast Ductal Carcinoma in Situ Using Conventional Ultrasound Combined with Contrast-Enhanced Ultrasound Features: A Two-Center Study.\",\"authors\":\"Tingting Wu, Jing Chen, Sihui Shao, Yu Du, Fang Li, Hui Liu, Liping Sun, Xuehong Diao, Rong Wu\",\"doi\":\"10.1016/j.clbc.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To develop and validate a model based on conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) features to preoperatively predict microinvasion in breast ductal carcinoma in situ (DCIS).</p><p><strong>Patients and methods: </strong>Data from 163 patients with DCIS who underwent CUS and CEUS from the internal hospital was retrospectively collected and randomly apportioned into training and internal validation sets in a ratio of 7:3. External validation set included 56 patients with DCIS from the external hospital. Univariate and multivariate logistic regression analysis were performed to determine the independent risk factors associated with microinvasion. These factors were used to develop predictive models. The performance was evaluated through calibration, discrimination, and clinical utility.</p><p><strong>Results: </strong>Multivariate analysis indicated that centripetal enhancement direction (odds ratio [OR], 13.268; 95% confidence interval [CI], 3.687-47.746) and enhancement range enlarged on CEUS (OR, 4.876; 95% CI, 1.470-16.181), lesion size of ≥20 mm (OR, 3.265; 95% CI, 1.230-8.669) and calcification detected on CUS (OR, 5.174; 95% CI, 1.903-14.066) were independent risk factors associated with microinvasion. The nomogram incorporated the CUS and CEUS features achieved favorable discrimination (AUCs of 0.850, 0.848, and 0.879 for the training, internal and external validation datasets), with good calibration. The nomogram outperformed the CUS model and CEUS model (all P < .05). Decision curve analysis confirmed that the predictive nomogram was clinically useful.</p><p><strong>Conclusion: </strong>The nomogram based on CUS and CEUS features showed promising predictive value for the preoperative identification of microinvasion in patients with DCIS.</p>\",\"PeriodicalId\":10197,\"journal\":{\"name\":\"Clinical breast cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical breast cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.clbc.2024.09.014\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical breast cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clbc.2024.09.014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prediction of Microinvasion in Breast Ductal Carcinoma in Situ Using Conventional Ultrasound Combined with Contrast-Enhanced Ultrasound Features: A Two-Center Study.
Background: To develop and validate a model based on conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) features to preoperatively predict microinvasion in breast ductal carcinoma in situ (DCIS).
Patients and methods: Data from 163 patients with DCIS who underwent CUS and CEUS from the internal hospital was retrospectively collected and randomly apportioned into training and internal validation sets in a ratio of 7:3. External validation set included 56 patients with DCIS from the external hospital. Univariate and multivariate logistic regression analysis were performed to determine the independent risk factors associated with microinvasion. These factors were used to develop predictive models. The performance was evaluated through calibration, discrimination, and clinical utility.
Results: Multivariate analysis indicated that centripetal enhancement direction (odds ratio [OR], 13.268; 95% confidence interval [CI], 3.687-47.746) and enhancement range enlarged on CEUS (OR, 4.876; 95% CI, 1.470-16.181), lesion size of ≥20 mm (OR, 3.265; 95% CI, 1.230-8.669) and calcification detected on CUS (OR, 5.174; 95% CI, 1.903-14.066) were independent risk factors associated with microinvasion. The nomogram incorporated the CUS and CEUS features achieved favorable discrimination (AUCs of 0.850, 0.848, and 0.879 for the training, internal and external validation datasets), with good calibration. The nomogram outperformed the CUS model and CEUS model (all P < .05). Decision curve analysis confirmed that the predictive nomogram was clinically useful.
Conclusion: The nomogram based on CUS and CEUS features showed promising predictive value for the preoperative identification of microinvasion in patients with DCIS.
期刊介绍:
Clinical Breast Cancer is a peer-reviewed bimonthly journal that publishes original articles describing various aspects of clinical and translational research of breast cancer. Clinical Breast Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of breast cancer. The main emphasis is on recent scientific developments in all areas related to breast cancer. Specific areas of interest include clinical research reports from various therapeutic modalities, cancer genetics, drug sensitivity and resistance, novel imaging, tumor genomics, biomarkers, and chemoprevention strategies.