双单倍体技术:快速生成玉米同源系的机遇与挑战。

Vencke K Grüning, Thomas Lübberstedt, Ursula K Frei
{"title":"双单倍体技术:快速生成玉米同源系的机遇与挑战。","authors":"Vencke K Grüning, Thomas Lübberstedt, Ursula K Frei","doi":"10.1101/pdb.top108437","DOIUrl":null,"url":null,"abstract":"<p><p>Maize is used for multiple purposes, including food, feed, and energy production, and since transitioning to hybrid cultivars at around 1930, maize yield has significantly increased. This is largely due to hybrid vigor, which refers to the superior performance of the progeny from two unrelated inbred parents. Consequently, nearly all maize cultivars grown in the United States are hybrids. Hybrid breeding programs comprise two essential components; namely, inbred line development and hybrid production. Traditionally, developing inbred lines takes a long time, requiring six to 10 generations of self-pollination. The doubled haploid (DH) technology, however, accelerates this process, enabling the derivation of fully homozygous lines within two generations. DH technology is applicable in several crop species and has been most successful in maize due to in vivo maternal haploid induction. Here, we review the origins of the DH technology, and discuss advantages and challenges of the technology as well as applications of DH lines.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubled Haploid Technology: Opportunities and Challenges for the Rapid Generation of Maize Homozygous Lines.\",\"authors\":\"Vencke K Grüning, Thomas Lübberstedt, Ursula K Frei\",\"doi\":\"10.1101/pdb.top108437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize is used for multiple purposes, including food, feed, and energy production, and since transitioning to hybrid cultivars at around 1930, maize yield has significantly increased. This is largely due to hybrid vigor, which refers to the superior performance of the progeny from two unrelated inbred parents. Consequently, nearly all maize cultivars grown in the United States are hybrids. Hybrid breeding programs comprise two essential components; namely, inbred line development and hybrid production. Traditionally, developing inbred lines takes a long time, requiring six to 10 generations of self-pollination. The doubled haploid (DH) technology, however, accelerates this process, enabling the derivation of fully homozygous lines within two generations. DH technology is applicable in several crop species and has been most successful in maize due to in vivo maternal haploid induction. Here, we review the origins of the DH technology, and discuss advantages and challenges of the technology as well as applications of DH lines.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top108437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

玉米有多种用途,包括粮食、饲料和能源生产。自 1930 年左右过渡到杂交栽培品种以来,玉米产量显著增加。这主要归功于杂交种的活力,杂交种活力指的是两个没有血缘关系的近亲繁殖亲本的后代表现优异。因此,美国种植的几乎所有玉米品种都是杂交种。杂交育种计划包括两个基本组成部分,即近交系开发和杂交种生产。传统上,培育近交系需要很长时间,需要六到十代的自花授粉。然而,加倍单倍体(DH)技术加快了这一进程,可在两代内培育出完全同源的品系。DH 技术适用于多个作物物种,其中以玉米的体内母本单倍体诱导技术最为成功。在此,我们回顾了 DH 技术的起源,并讨论了该技术的优势和挑战以及 DH 株系的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doubled Haploid Technology: Opportunities and Challenges for the Rapid Generation of Maize Homozygous Lines.

Maize is used for multiple purposes, including food, feed, and energy production, and since transitioning to hybrid cultivars at around 1930, maize yield has significantly increased. This is largely due to hybrid vigor, which refers to the superior performance of the progeny from two unrelated inbred parents. Consequently, nearly all maize cultivars grown in the United States are hybrids. Hybrid breeding programs comprise two essential components; namely, inbred line development and hybrid production. Traditionally, developing inbred lines takes a long time, requiring six to 10 generations of self-pollination. The doubled haploid (DH) technology, however, accelerates this process, enabling the derivation of fully homozygous lines within two generations. DH technology is applicable in several crop species and has been most successful in maize due to in vivo maternal haploid induction. Here, we review the origins of the DH technology, and discuss advantages and challenges of the technology as well as applications of DH lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
期刊最新文献
Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments. Cloning of Affibody Libraries for Display Methods. Engineering of Affibody Molecules. Selection of Affibody Molecules Using Staphylococcal Display. Selection of Affibody Molecules Using Phage Display.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1