半合成噬菌体展示文库构建:多样化单链可变片段的设计与合成以及初级文库的生成。

Juan C Almagro, Mary Ann Pohl
{"title":"半合成噬菌体展示文库构建:多样化单链可变片段的设计与合成以及初级文库的生成。","authors":"Juan C Almagro, Mary Ann Pohl","doi":"10.1101/pdb.prot108614","DOIUrl":null,"url":null,"abstract":"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (V<sub>H</sub>) scaffold and four distinct variable light (V<sub>L</sub>) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a V<sub>L</sub>-linker-V<sub>H</sub> orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisynthetic Phage Display Library Construction: Design and Synthesis of Diversified Single-Chain Variable Fragments and Generation of Primary Libraries.\",\"authors\":\"Juan C Almagro, Mary Ann Pohl\",\"doi\":\"10.1101/pdb.prot108614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (V<sub>H</sub>) scaffold and four distinct variable light (V<sub>L</sub>) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a V<sub>L</sub>-linker-V<sub>H</sub> orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 M13 丝状噬菌体表面展示抗体片段是一种行之有效的方法,可用于鉴定与感兴趣的靶点结合的抗体。在这里,我们介绍了构建治疗性抗体库(ALTHEA)三步法中的第一步。三步法包括:(1)构建初级文库(PL);(2)构建过滤文库;(3)构建次级文库。这里介绍的第一步包括设计、合成和克隆四个 PL。这些PLs是利用一个通用可变重型(VH)支架和四个不同的可变轻型(VL)支架设计的,具有适合治疗性抗体开发的特殊性质。这些支架在已知结构的抗体-抗原复合物中与蛋白质和肽靶标结合的位置上进行了多样化,使用的是在已知人类抗体序列中这些位置上发现的氨基酸频率,避免了可能导致可开发性缺陷的残基。多样化的支架与 90 个合成的中性 HCDR3 序列相结合,这些中性 HCDR3 序列设计有可开发的人类多样性基因 (IGHD) 和种系构型的连接重型基因 (IGHJ),并以 VL 连接子-VH 方向组装成单链可变片段 (scFv)。使用三核苷酸磷酸酰胺(TRIM)合成设计的四种 PL,并将其独立克隆到用于 M13 pIII 展示的噬菌体载体中。此外,还介绍了四种 PL 的克隆质量控制,包括对每个文库中的 scFvs 进行测序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semisynthetic Phage Display Library Construction: Design and Synthesis of Diversified Single-Chain Variable Fragments and Generation of Primary Libraries.

Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (VH) scaffold and four distinct variable light (VL) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a VL-linker-VH orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
期刊最新文献
Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments. Cloning of Affibody Libraries for Display Methods. Engineering of Affibody Molecules. Selection of Affibody Molecules Using Staphylococcal Display. Selection of Affibody Molecules Using Phage Display.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1