人类维生素 C 生物合成基因 GULO 的缺失对肿瘤标志物的增效作用

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-10-14 DOI:10.2174/0115665240328074241003110326
Gopinath Sekar, Anjali Bahot, Mahima Bansode, Anushka Phadnis, Sachin C Sarode, Nilesh Kumar Sharma
{"title":"人类维生素 C 生物合成基因 GULO 的缺失对肿瘤标志物的增效作用","authors":"Gopinath Sekar, Anjali Bahot, Mahima Bansode, Anushka Phadnis, Sachin C Sarode, Nilesh Kumar Sharma","doi":"10.2174/0115665240328074241003110326","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin C plays a significant role in various physiological functions. Humans depend on external sources of vitamin C due to the loss of the L-gulono-γ-lactone oxidase (GULO) gene that contributes to the synthesis of vitamin C. During the evolutionary loss of the GULO gene, physical, chemical, and biological factors were different from the present environmental settings. Besides the evolutionary genetic loss of the GULO gene, there is a gap in the insightful discussion on the potential implications of the non-functional GULO gene towards the predisposition of humans to cancer that faces hostile and carcinogenic environments. Various methods by which vitamin C modulates cellular processes related to cancer, including DNA repair, epigenetic changes, and redox balance, are discussed. Furthermore, we present experimental and clinical evidence indicating that vitamin C deficiency promotes tumor growth, metastasis, and therapy resistance, emphasizing its potential as a cancer phenotypic modulator. Therapeutic implications of restoring vitamin C levels in cancer treatment range from improving the efficacy of conventional medicines to exploiting metabolic vulnerabilities in tumors. The relevance of assessing vitamin C status in cancer patients and the basis for additional research into vitamin C supplementation as an adjuvant therapy is emphasized. This paper presents a comprehensive overview of the implications associated with the functional deficiency of the GULO gene in human subjects exhibiting diverse tumor hallmarks, encompassing ECM remodeling, hypoxia, epigenetic reprogramming, oxidative stress, and drug responsiveness.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potentiation of Tumor Hallmarks by the Loss of GULO, a Vitamin C Biosynthesis Gene in Humans.\",\"authors\":\"Gopinath Sekar, Anjali Bahot, Mahima Bansode, Anushka Phadnis, Sachin C Sarode, Nilesh Kumar Sharma\",\"doi\":\"10.2174/0115665240328074241003110326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vitamin C plays a significant role in various physiological functions. Humans depend on external sources of vitamin C due to the loss of the L-gulono-γ-lactone oxidase (GULO) gene that contributes to the synthesis of vitamin C. During the evolutionary loss of the GULO gene, physical, chemical, and biological factors were different from the present environmental settings. Besides the evolutionary genetic loss of the GULO gene, there is a gap in the insightful discussion on the potential implications of the non-functional GULO gene towards the predisposition of humans to cancer that faces hostile and carcinogenic environments. Various methods by which vitamin C modulates cellular processes related to cancer, including DNA repair, epigenetic changes, and redox balance, are discussed. Furthermore, we present experimental and clinical evidence indicating that vitamin C deficiency promotes tumor growth, metastasis, and therapy resistance, emphasizing its potential as a cancer phenotypic modulator. Therapeutic implications of restoring vitamin C levels in cancer treatment range from improving the efficacy of conventional medicines to exploiting metabolic vulnerabilities in tumors. The relevance of assessing vitamin C status in cancer patients and the basis for additional research into vitamin C supplementation as an adjuvant therapy is emphasized. This paper presents a comprehensive overview of the implications associated with the functional deficiency of the GULO gene in human subjects exhibiting diverse tumor hallmarks, encompassing ECM remodeling, hypoxia, epigenetic reprogramming, oxidative stress, and drug responsiveness.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240328074241003110326\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240328074241003110326","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

维生素 C 在各种生理功能中发挥着重要作用。在 GULO 基因丧失的进化过程中,物理、化学和生物因素与现在的环境不同。除了 GULO 基因在进化过程中丢失之外,关于 GULO 基因失效对面临恶劣致癌环境的人类易患癌症的潜在影响的深入探讨也存在空白。我们讨论了维生素 C 调节与癌症有关的细胞过程的各种方法,包括 DNA 修复、表观遗传变化和氧化还原平衡。此外,我们还提供了实验和临床证据,表明维生素 C 缺乏会促进肿瘤生长、转移和耐药性,从而强调了维生素 C 作为癌症表型调节剂的潜力。在癌症治疗中恢复维生素 C 水平的治疗意义包括提高传统药物的疗效和利用肿瘤的代谢弱点。本文强调了评估癌症患者体内维生素 C 状态的意义,以及将维生素 C 补充剂作为辅助疗法进行更多研究的基础。本文全面概述了人体 GULO 基因功能缺失的相关影响,研究对象表现出多种肿瘤特征,包括 ECM 重塑、缺氧、表观遗传重编程、氧化应激和药物反应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potentiation of Tumor Hallmarks by the Loss of GULO, a Vitamin C Biosynthesis Gene in Humans.

Vitamin C plays a significant role in various physiological functions. Humans depend on external sources of vitamin C due to the loss of the L-gulono-γ-lactone oxidase (GULO) gene that contributes to the synthesis of vitamin C. During the evolutionary loss of the GULO gene, physical, chemical, and biological factors were different from the present environmental settings. Besides the evolutionary genetic loss of the GULO gene, there is a gap in the insightful discussion on the potential implications of the non-functional GULO gene towards the predisposition of humans to cancer that faces hostile and carcinogenic environments. Various methods by which vitamin C modulates cellular processes related to cancer, including DNA repair, epigenetic changes, and redox balance, are discussed. Furthermore, we present experimental and clinical evidence indicating that vitamin C deficiency promotes tumor growth, metastasis, and therapy resistance, emphasizing its potential as a cancer phenotypic modulator. Therapeutic implications of restoring vitamin C levels in cancer treatment range from improving the efficacy of conventional medicines to exploiting metabolic vulnerabilities in tumors. The relevance of assessing vitamin C status in cancer patients and the basis for additional research into vitamin C supplementation as an adjuvant therapy is emphasized. This paper presents a comprehensive overview of the implications associated with the functional deficiency of the GULO gene in human subjects exhibiting diverse tumor hallmarks, encompassing ECM remodeling, hypoxia, epigenetic reprogramming, oxidative stress, and drug responsiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
ESM-1 Promotes the Process of Diabetic Nephropathy by Promoting the Expression of CXCL3. From Reactive Hyperplasia to Neoplastic Changes: Histopathological Insights into Lymphadenopathy. Recent Accomplishments in Exhaled Breath Condensate Analysis - Molecular Aspects. Aptamers for Brain Tumors: A Therapeutic Agent for Effectively Crossing the Blood-Brain Barrier. The Molecular Mechanism of a Complex1-Induced Apoptosis in Cancer Cells of the Esophagus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1