从硅学研究的角度确定 RSV 通过 IL-17 信号通路抑制炎症反应治疗 COVID-19 和特发性肺纤维化的机制

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-10-11 DOI:10.2174/0109298673308841240930044555
Jiahao Wang, Jiamiao Shi, Ning Jia, Qinru Sun
{"title":"从硅学研究的角度确定 RSV 通过 IL-17 信号通路抑制炎症反应治疗 COVID-19 和特发性肺纤维化的机制","authors":"Jiahao Wang, Jiamiao Shi, Ning Jia, Qinru Sun","doi":"10.2174/0109298673308841240930044555","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Both coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.</p><p><strong>Objective: </strong>The purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.</p><p><strong>Method: </strong>Utilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.</p><p><strong>Results: </strong>The 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.</p><p><strong>Conclusions: </strong>Our research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Mechanism of RSV for the Treatment of COVID-19 and Idiopathic Pulmonary Fibrosis via Suppressing Inflammation Response Through IL-17 Signaling Pathway from the Perspectives of in silico Study.\",\"authors\":\"Jiahao Wang, Jiamiao Shi, Ning Jia, Qinru Sun\",\"doi\":\"10.2174/0109298673308841240930044555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Both coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.</p><p><strong>Objective: </strong>The purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.</p><p><strong>Method: </strong>Utilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.</p><p><strong>Results: </strong>The 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.</p><p><strong>Conclusions: </strong>Our research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673308841240930044555\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673308841240930044555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:2019年冠状病毒病(COVID-19)和特发性肺纤维化(IPF)均可导致严重的肺损伤,且预后极差,死亡率极高。白藜芦醇(RSV)作为一种天然多酚,在治疗病毒感染和肺纤维化方面具有广阔的前景:本研究的目的是调查 RSV 作为抗 COVID-19 和 IPF 治疗的不明确机制:方法:利用相关数据库,发现IPF、COVID-19和RSV可能靶点相关基因的交叉点。然后利用 GO 和 KEGG 分析、TP 和 PPI 网络分析对获得的靶点进行研究。此外,还利用分子对接法计算了核心靶标与 RSV 之间的结合亲和力:结果:1101 个 COVID-19 靶点、2166 个 IPF 靶点和 341 个 RSV 靶点与 21 个重叠靶点存在交叉。PPI网络揭示了靶点之间的相互作用,TP网络揭示了靶点与通路之间的相互作用。通过两项网络分析,包括JUN、CCL2、CXCL8、IL6和SERPINE1在内的五个靶点被确定为核心靶点。GO分析表明趋化、炎症反应和血管生成是重要的病理生理过程。结合 TP 网络分析和 KEGG 分析,IL-17 信号通路被认为是重要的通路。除JUN外,分子对接显示其他四个靶点的结合能低于-5 kcal/mol,表明RSV与其他靶点之间存在密切的相互作用:我们的研究阐明了RSV参与抗COVID-19和IPF效应的靶点、通路和病理生理过程,表明RSV可能是减少感染和纤维化的候选疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Mechanism of RSV for the Treatment of COVID-19 and Idiopathic Pulmonary Fibrosis via Suppressing Inflammation Response Through IL-17 Signaling Pathway from the Perspectives of in silico Study.

Background: Both coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.

Objective: The purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.

Method: Utilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.

Results: The 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.

Conclusions: Our research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Development and Validation of a Diagnostic Model for AKI Based on the Analysis of Ferroptosis-related Genes. Fibroblast Heterogeneity in Hepatocellular Carcinoma and Identification of Prognostic Markers Based on Single-cell Transcriptome Analysis. Advances in Discovery and Design of Anti-influenza Virus Peptides. C-Reactive Protein Biosensor for Diagnosing Infections Caused by Orthopedic Trauma. Stimuli-Responsive Nano/Biomaterials for Smart Drug Delivery in Cardiovascular Diseases: Promises, Challenges and Outlooks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1