含有 2,3-二氢苯并呋喃-5-甲酰胺的新型磺酰基哌啶类似物的合成、DFT、ADMET 和 Docking 研究。

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2024-10-11 DOI:10.2174/0109298673329232241007101050
Tummuri Sudheer Reddy, Karreddula Raja, Gopi Krishna Pitchika, Manubolu Surya Surendra Babu
{"title":"含有 2,3-二氢苯并呋喃-5-甲酰胺的新型磺酰基哌啶类似物的合成、DFT、ADMET 和 Docking 研究。","authors":"Tummuri Sudheer Reddy, Karreddula Raja, Gopi Krishna Pitchika, Manubolu Surya Surendra Babu","doi":"10.2174/0109298673329232241007101050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.</p><p><strong>Objective: </strong>This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.</p><p><strong>Methods: </strong>The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.</p><p><strong>Results: </strong>Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.</p><p><strong>Conclusion: </strong>Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide.\",\"authors\":\"Tummuri Sudheer Reddy, Karreddula Raja, Gopi Krishna Pitchika, Manubolu Surya Surendra Babu\",\"doi\":\"10.2174/0109298673329232241007101050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.</p><p><strong>Objective: </strong>This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.</p><p><strong>Methods: </strong>The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.</p><p><strong>Results: </strong>Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.</p><p><strong>Conclusion: </strong>Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673329232241007101050\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673329232241007101050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:癌症仍然是全球死亡的主要原因,因此开发副作用小的有效抗癌药物势在必行。通过阻碍癌细胞的生存和生长,小分子药物在癌症研究领域取得了巨大进展。一些具有生物活性的杂环化合物,包括哌啶和 2,3-二氢苯并呋喃的衍生物,已经显示出巨大的前景,并被用于各种抗癌药物中。这些小分子抑制剂干扰了驱动癌细胞增殖的重要信号,从而阻碍了癌症的生长和转移:本研究的重点是合成和评估含有 2,3-二氢苯并呋喃-5-甲酰胺的新型磺酰基哌啶类似物作为潜在的抗癌药物:方法:使用 1H NMR 和 ESI-MS 等光谱技术对合成的化合物进行表征。采用了蛋白质-药物相互作用研究、DFT分析和靶标预测技术。在体外针对 MCF-7 细胞系评估了这些化合物的抗癌特性。特别研究了化合物 5 和 7 对 MCF7 乳腺癌细胞的生长抑制作用:结果:化合物 5 和 7 对突变的 BRCA1(PDB ID:1N5O)和 BRCA2(PDB ID:8BR9)都有很强的结合亲和力。此外,它们对 MCF-7 细胞系也有显著疗效:合成的化合物对 MCF-7 细胞株具有活性,支持了室内预测的结果。为了阐明这些选定分子对 MCF-7 细胞类型的作用机制,有必要进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide.

Background: The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.

Objective: This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.

Methods: The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.

Results: Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.

Conclusion: Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Development and Validation of a Diagnostic Model for AKI Based on the Analysis of Ferroptosis-related Genes. Fibroblast Heterogeneity in Hepatocellular Carcinoma and Identification of Prognostic Markers Based on Single-cell Transcriptome Analysis. Advances in Discovery and Design of Anti-influenza Virus Peptides. C-Reactive Protein Biosensor for Diagnosing Infections Caused by Orthopedic Trauma. Stimuli-Responsive Nano/Biomaterials for Smart Drug Delivery in Cardiovascular Diseases: Promises, Challenges and Outlooks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1