{"title":"含有 2,3-二氢苯并呋喃-5-甲酰胺的新型磺酰基哌啶类似物的合成、DFT、ADMET 和 Docking 研究。","authors":"Tummuri Sudheer Reddy, Karreddula Raja, Gopi Krishna Pitchika, Manubolu Surya Surendra Babu","doi":"10.2174/0109298673329232241007101050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.</p><p><strong>Objective: </strong>This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.</p><p><strong>Methods: </strong>The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.</p><p><strong>Results: </strong>Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.</p><p><strong>Conclusion: </strong>Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide.\",\"authors\":\"Tummuri Sudheer Reddy, Karreddula Raja, Gopi Krishna Pitchika, Manubolu Surya Surendra Babu\",\"doi\":\"10.2174/0109298673329232241007101050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.</p><p><strong>Objective: </strong>This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.</p><p><strong>Methods: </strong>The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.</p><p><strong>Results: </strong>Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.</p><p><strong>Conclusion: </strong>Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673329232241007101050\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673329232241007101050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide.
Background: The development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.
Objective: This study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-- cancer agents.
Methods: The synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.
Results: Compounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.
Conclusion: Synthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.