Nastaran Khazamipour, Htoo Zarni Oo, Nader Al-Nakouzi, Mona Marzban, Nasrin Khazamipour, Morgan E Roberts, Negin Farivar, Igor Moskalev, Joey Lo, Fariba Ghaidi, Irina Nelepcu, Alireza Moeen, Sarah Truong, Robert Dagil, Swati Choudhary, Tobias Gustavsson, Beibei Zhai, Sabine Heitzender, Ali Salanti, Poul H Sorensen, Mads Daugaard
{"title":"实体瘤中对胎盘糖胺聚糖具有特异性的瞬时 CAR T 细胞。","authors":"Nastaran Khazamipour, Htoo Zarni Oo, Nader Al-Nakouzi, Mona Marzban, Nasrin Khazamipour, Morgan E Roberts, Negin Farivar, Igor Moskalev, Joey Lo, Fariba Ghaidi, Irina Nelepcu, Alireza Moeen, Sarah Truong, Robert Dagil, Swati Choudhary, Tobias Gustavsson, Beibei Zhai, Sabine Heitzender, Ali Salanti, Poul H Sorensen, Mads Daugaard","doi":"10.1038/s44321-024-00153-8","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans are often deprioritized as targets for synthetic immunotherapy due to the complexity of glyco-epitopes and limited options for obtaining specific subtype binding. Solid tumors express proteoglycans that are modified with oncofetal chondroitin sulfate (CS), a modification normally restricted to the placenta. Here, we report the design and functionality of transient chimeric antigen receptor (CAR) T cells with selectivity to oncofetal CS. Following expression in T cells, the CAR could be \"armed\" with recombinant VAR2CSA lectins (rVAR2) to target tumor cells expressing oncofetal CS. While unarmed CAR T cells remained inactive in the presence of target cells, VAR2-armed CAR T cells displayed robust activation and the ability to eliminate diverse tumor cell types in vitro. Cytotoxicity of the CAR T cells was proportional to the concentration of rVAR2 available to the CAR, offering a potential molecular handle to finetune CAR T cell activity. In vivo, armed CAR T cells rapidly targeted bladder tumors and increased the survival of tumor-bearing mice. Thus, our work indicates that cancer-restricted glycosaminoglycans may be exploited as potential targets for CAR T cell therapy.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"2775-2794"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transient CAR T cells with specificity to oncofetal glycosaminoglycans in solid tumors.\",\"authors\":\"Nastaran Khazamipour, Htoo Zarni Oo, Nader Al-Nakouzi, Mona Marzban, Nasrin Khazamipour, Morgan E Roberts, Negin Farivar, Igor Moskalev, Joey Lo, Fariba Ghaidi, Irina Nelepcu, Alireza Moeen, Sarah Truong, Robert Dagil, Swati Choudhary, Tobias Gustavsson, Beibei Zhai, Sabine Heitzender, Ali Salanti, Poul H Sorensen, Mads Daugaard\",\"doi\":\"10.1038/s44321-024-00153-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycosaminoglycans are often deprioritized as targets for synthetic immunotherapy due to the complexity of glyco-epitopes and limited options for obtaining specific subtype binding. Solid tumors express proteoglycans that are modified with oncofetal chondroitin sulfate (CS), a modification normally restricted to the placenta. Here, we report the design and functionality of transient chimeric antigen receptor (CAR) T cells with selectivity to oncofetal CS. Following expression in T cells, the CAR could be \\\"armed\\\" with recombinant VAR2CSA lectins (rVAR2) to target tumor cells expressing oncofetal CS. While unarmed CAR T cells remained inactive in the presence of target cells, VAR2-armed CAR T cells displayed robust activation and the ability to eliminate diverse tumor cell types in vitro. Cytotoxicity of the CAR T cells was proportional to the concentration of rVAR2 available to the CAR, offering a potential molecular handle to finetune CAR T cell activity. In vivo, armed CAR T cells rapidly targeted bladder tumors and increased the survival of tumor-bearing mice. Thus, our work indicates that cancer-restricted glycosaminoglycans may be exploited as potential targets for CAR T cell therapy.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"2775-2794\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-024-00153-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00153-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
由于糖表位的复杂性和获得特异亚型结合的选择有限,糖胺聚糖通常被排除在合成免疫疗法靶点的优先考虑之外。实体瘤表达的蛋白多糖是由胎盘上的硫酸软骨素(CS)修饰的,这种修饰通常仅限于胎盘。在这里,我们报告了对胎盘上硫酸软骨素具有选择性的瞬时嵌合抗原受体(CAR)T 细胞的设计和功能。在 T 细胞中表达后,CAR 可以用重组 VAR2CSA 凝集素(rVAR2)"武装",以靶向表达胎盘上 CS 的肿瘤细胞。未装备的 CAR T 细胞在靶细胞存在的情况下仍然没有活性,而装备了 VAR2 的 CAR T 细胞则显示出强大的活化能力,并能在体外消除不同类型的肿瘤细胞。CAR T细胞的细胞毒性与CAR可用的rVAR2浓度成正比,这为微调CAR T细胞活性提供了一种潜在的分子处理方法。在体内,武装的 CAR T 细胞能迅速靶向膀胱肿瘤,并提高肿瘤小鼠的存活率。因此,我们的研究表明,癌症限制性糖胺聚糖可被用作 CAR T 细胞疗法的潜在靶点。
Transient CAR T cells with specificity to oncofetal glycosaminoglycans in solid tumors.
Glycosaminoglycans are often deprioritized as targets for synthetic immunotherapy due to the complexity of glyco-epitopes and limited options for obtaining specific subtype binding. Solid tumors express proteoglycans that are modified with oncofetal chondroitin sulfate (CS), a modification normally restricted to the placenta. Here, we report the design and functionality of transient chimeric antigen receptor (CAR) T cells with selectivity to oncofetal CS. Following expression in T cells, the CAR could be "armed" with recombinant VAR2CSA lectins (rVAR2) to target tumor cells expressing oncofetal CS. While unarmed CAR T cells remained inactive in the presence of target cells, VAR2-armed CAR T cells displayed robust activation and the ability to eliminate diverse tumor cell types in vitro. Cytotoxicity of the CAR T cells was proportional to the concentration of rVAR2 available to the CAR, offering a potential molecular handle to finetune CAR T cell activity. In vivo, armed CAR T cells rapidly targeted bladder tumors and increased the survival of tumor-bearing mice. Thus, our work indicates that cancer-restricted glycosaminoglycans may be exploited as potential targets for CAR T cell therapy.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)