WONOEP鉴定:神经胶质细胞在与早发性癫痫相关的局灶畸形中的作用。

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY Epilepsia Pub Date : 2024-10-14 DOI:10.1111/epi.18126
Silvia Cases-Cunillera, Anne Quatraccioni, Laura Rossini, Gabriele Ruffolo, Tomonori Ono, Stéphanie Baulac, Stéphane Auvin, Terence J O'Brien, David C Henshall, Özlem Akman, Raman Sankar, Aristea S Galanopoulou
{"title":"WONOEP鉴定:神经胶质细胞在与早发性癫痫相关的局灶畸形中的作用。","authors":"Silvia Cases-Cunillera, Anne Quatraccioni, Laura Rossini, Gabriele Ruffolo, Tomonori Ono, Stéphanie Baulac, Stéphane Auvin, Terence J O'Brien, David C Henshall, Özlem Akman, Raman Sankar, Aristea S Galanopoulou","doi":"10.1111/epi.18126","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies.\",\"authors\":\"Silvia Cases-Cunillera, Anne Quatraccioni, Laura Rossini, Gabriele Ruffolo, Tomonori Ono, Stéphanie Baulac, Stéphane Auvin, Terence J O'Brien, David C Henshall, Özlem Akman, Raman Sankar, Aristea S Galanopoulou\",\"doi\":\"10.1111/epi.18126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18126\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18126","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是脑发育病变患者常见的神经系统疾病,特别是与皮质发育畸形和低度胶质细胞瘤相关的疾病。在这些疾病中,越来越多地发现神经元的基因和分子改变会引发神经元网络异常,导致神经元兴奋性水平升高。然而,癫痫的发病机制不能仅仅依赖于对神经元成分的评估。越来越多的证据揭示了致痫过程的高度复杂性,其中神经胶质细胞成为神经元活动的潜在调节器。由于大脑皮质发育畸形和低级别胶质细胞瘤等脑发育病变具有高度抗药性,因此了解胶质细胞在这些病变中的作用至关重要。这促使人们研究神经胶质细胞和免疫细胞在癫痫样活动中的作用,以寻找可用作组合药物疗法的新治疗靶点。在国际抗癫痫联盟(International League Against Epilepsy)神经生物学委员会组织的第十六届癫痫神经生物学研讨会(WONOEP,法国塔卢瓦,2022年7月)的一次特别会议上,我们讨论了探索神经胶质细胞和免疫反应的遗传和分子机制的证据,以及它们在与生命早期癫痫相关的神经发育病理学发病机制中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies.

Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
期刊最新文献
Automatic responsiveness testing in epilepsy with wearable technology: The ARTiE Watch. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Issue Information Association of cognitive and structural correlates of brain aging and incident epilepsy. The Framingham Heart Study. Epilepsia – November 2024 Announcements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1