{"title":"比较不同强度的阳极和阴极经颅直流电刺激初级运动皮层对健康年轻人运动学习的影响。","authors":"Sheida Mousavi, Amin Mottahedi, Fatemeh Ehsani, Cyrus Taghizadeh Delkhosh, Shapour Jaberzadeh","doi":"10.1111/ejn.16572","DOIUrl":null,"url":null,"abstract":"<p>Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired <i>t</i>-test indicated that online learning occurred in all groups (<i>p</i> < 0.05), except in M1 c-tDCS (1 mA) (<i>p</i> > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); <i>p</i> < 0.001; and ER (F(DF) = 9(4), <i>p</i> < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (<i>p</i> < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 10","pages":"6543-6555"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing the effects of anodal and cathodal transcranial direct current stimulation of primary motor cortex at varying intensities on motor learning in healthy young adults\",\"authors\":\"Sheida Mousavi, Amin Mottahedi, Fatemeh Ehsani, Cyrus Taghizadeh Delkhosh, Shapour Jaberzadeh\",\"doi\":\"10.1111/ejn.16572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired <i>t</i>-test indicated that online learning occurred in all groups (<i>p</i> < 0.05), except in M1 c-tDCS (1 mA) (<i>p</i> > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); <i>p</i> < 0.001; and ER (F(DF) = 9(4), <i>p</i> < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (<i>p</i> < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"60 10\",\"pages\":\"6543-6555\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16572\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16572","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
不同蒙太奇的经颅直流电刺激(tDCS)对运动学习的影响结果并不一致。本研究旨在比较不同强度的阳极和阴极经颅直流电刺激(c-tDCS)对健康年轻人初级运动皮层(M1)运动学习的影响。参与者被随机分为:(1) 1 mA M1 c-tDCS组;(2) 1 mA M1 阳极 tDCS(a-tDCS)组;(3) 2 mA M1 c-tDCS组;(4) 2 mA M1 a-tDCS组;(5) M1假tDCS组。各组均接受 20 分钟的序列反应时间任务(SRTT)刺激,假 tDCS 组在 30 秒后关闭 tDCS。在干预前、干预期间和干预后 72 小时,对 SRTT 期间的反应时间(RT)和错误率(ER)进行评估。配对 t 检验的结果表明,所有组都进行了在线学习(p 0.05)。单因子方差分析也表明,离线学习存在差异(RT(F(DF)= 5.19(4);p
Comparing the effects of anodal and cathodal transcranial direct current stimulation of primary motor cortex at varying intensities on motor learning in healthy young adults
Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired t-test indicated that online learning occurred in all groups (p < 0.05), except in M1 c-tDCS (1 mA) (p > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); p < 0.001; and ER (F(DF) = 9(4), p < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (p < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.