健康志愿者自主神经系统对 5G 首个部署频段(3.5 GHz)环境级暴露的反应。

IF 2.6 4区 医学 Q2 PHYSIOLOGY Experimental Physiology Pub Date : 2024-10-15 DOI:10.1113/EP092083
Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui
{"title":"健康志愿者自主神经系统对 5G 首个部署频段(3.5 GHz)环境级暴露的反应。","authors":"Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui","doi":"10.1113/EP092083","DOIUrl":null,"url":null,"abstract":"<p><p>Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous nervous system responses to environmental-level exposure to 5G's first deployed band (3.5 GHz) in healthy human volunteers.\",\"authors\":\"Layla Jamal, Lisa Michelant, Stéphane Delanaud, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Tamara Baz, Véronique Bach, Brahim Selmaoui\",\"doi\":\"10.1113/EP092083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092083\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着 5G 网络在全球的逐步部署,评估其对人类健康的潜在影响已成为人们关注的焦点。本研究旨在通过探究 44 名健康的年轻男女在暴露于 3.5 GHz 天线发射信号(电场强度为 1 到 2 V/m)期间和之后的皮肤温度和电皮活动(EDA),研究自主神经系统的变化。研究采用了随机、交叉设计和三重盲法,包括 "真实 "和 "虚假 "暴露环节,最长间隔时间为一周。每个疗程包括基线、暴露和暴露后阶段,共获得七次运行。每次运行开始时,都会在 10 次重复蜂鸣声的刺激下进行 150 秒的 EDA 记录。随后,对收集到的数据进行连续分解分析,生成特定指标,与波谷-峰值测量、整体皮肤电导和最大正峰值偏转等标准指标一起进行评估。此外,还进行了非侵入式实时皮肤温度测量,以评估特定的解剖点(手部、头部和颈部)。研究表明,暴露于 3.5 GHz 信号可能会对头部和颈部温度产生潜在影响,表明该参数略有上升。此外,暴露后对某些电皮指标的调节极小,表明对听觉刺激的生理反应可能更快。不过,虽然结果显著,但仍在正常生理范围内,可能是一个未控制变量的结果。鉴于这项试验性研究的初步性质,还需要进一步的研究来证实 5G 暴露的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous nervous system responses to environmental-level exposure to 5G's first deployed band (3.5 GHz) in healthy human volunteers.

Following the global progressive deployment of 5G networks, considerable attention has focused on assessing their potential impact on human health. This study aims to investigate autonomous nervous system changes by exploring skin temperature and electrodermal activity (EDA) among 44 healthy young individuals of both sexes during and after exposure to 3.5 GHz antenna-emitted signals, with an electrical field intensity ranging from 1 to 2 V/m. The study employed a randomized, cross-over design with triple-blinding, encompassing both 'real' and 'sham' exposure sessions, separated by a maximum interval of 1 week. Each session comprised baseline, exposure and postexposure phases, resulting in the acquisition of seven runs. Each run initiated with a 150 s segment of EDA recordings stimulated by 10 repeated beeps. Subsequently, the collected data underwent continuous decomposition analysis, generating specific indicators assessed alongside standard metrics such as trough-to-peak measurements, global skin conductance and maximum positive peak deflection. Additionally, non-invasive, real-time skin temperature measurements were conducted to evaluate specific anatomical points (hand, head and neck). The study suggests that exposure to 3.5 GHz signals may potentially affect head and neck temperature, indicating a slight increase in this parameter. Furthermore, there was a minimal modulation of certain electrodermal metrics after the exposure, suggesting a potentially faster physiological response to auditory stimulation. However, while the results are significant, they remain within the normal physiological range and could be a consequence of an uncontrolled variable. Given the preliminary nature of this pilot study, further research is needed to confirm the effects of 5G exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Physiology
Experimental Physiology 医学-生理学
CiteScore
5.10
自引率
3.70%
发文量
262
审稿时长
1 months
期刊介绍: Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged. Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.
期刊最新文献
My journey from an early researcher to an aspiring medic: A dance from bench to bedside. Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Inhibition of TrkB kinase activity impairs autophagy in cervical motor neurons of young but not old mice. Measuring position sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1