Dimitrios Kleidonas, Louis Hilfiger, Maximilian Lenz, Dieter Häussinger, Andreas Vlachos
{"title":"氯化铵可减少小鼠器官型切片培养的 CA1 锥体神经元的兴奋性突触传递。","authors":"Dimitrios Kleidonas, Louis Hilfiger, Maximilian Lenz, Dieter Häussinger, Andreas Vlachos","doi":"10.3389/fncel.2024.1410275","DOIUrl":null,"url":null,"abstract":"<p><p>Acute liver dysfunction commonly leads to rapid increases in ammonia concentrations in both the serum and the cerebrospinal fluid. These elevations primarily affect brain astrocytes, causing modifications in their structure and function. However, its impact on neurons is not yet fully understood. In this study, we investigated the impact of elevated ammonium chloride levels (NH<sub>4</sub>Cl, 5 mM) on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic entorhino-hippocampal tissue cultures. We found that acute exposure to NH<sub>4</sub>Cl reversibly reduced excitatory synaptic transmission and affected CA3-CA1 synapses. Notably, NH<sub>4</sub>Cl modified astrocytic, but not CA1 pyramidal neuron, passive intrinsic properties. To further explore the role of astrocytes in NH<sub>4</sub>Cl-induced attenuation of synaptic transmission, we used methionine sulfoximine to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance in the central nervous system. Inhibition of glutamine synthetase effectively prevented the downregulation of excitatory synaptic activity, underscoring the significant role of astrocytes in adjusting excitatory synapses during acute ammonia elevation.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1410275"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ammonium chloride reduces excitatory synaptic transmission onto CA1 pyramidal neurons of mouse organotypic slice cultures.\",\"authors\":\"Dimitrios Kleidonas, Louis Hilfiger, Maximilian Lenz, Dieter Häussinger, Andreas Vlachos\",\"doi\":\"10.3389/fncel.2024.1410275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute liver dysfunction commonly leads to rapid increases in ammonia concentrations in both the serum and the cerebrospinal fluid. These elevations primarily affect brain astrocytes, causing modifications in their structure and function. However, its impact on neurons is not yet fully understood. In this study, we investigated the impact of elevated ammonium chloride levels (NH<sub>4</sub>Cl, 5 mM) on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic entorhino-hippocampal tissue cultures. We found that acute exposure to NH<sub>4</sub>Cl reversibly reduced excitatory synaptic transmission and affected CA3-CA1 synapses. Notably, NH<sub>4</sub>Cl modified astrocytic, but not CA1 pyramidal neuron, passive intrinsic properties. To further explore the role of astrocytes in NH<sub>4</sub>Cl-induced attenuation of synaptic transmission, we used methionine sulfoximine to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance in the central nervous system. Inhibition of glutamine synthetase effectively prevented the downregulation of excitatory synaptic activity, underscoring the significant role of astrocytes in adjusting excitatory synapses during acute ammonia elevation.</p>\",\"PeriodicalId\":12432,\"journal\":{\"name\":\"Frontiers in Cellular Neuroscience\",\"volume\":\"18 \",\"pages\":\"1410275\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncel.2024.1410275\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2024.1410275","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Acute liver dysfunction commonly leads to rapid increases in ammonia concentrations in both the serum and the cerebrospinal fluid. These elevations primarily affect brain astrocytes, causing modifications in their structure and function. However, its impact on neurons is not yet fully understood. In this study, we investigated the impact of elevated ammonium chloride levels (NH4Cl, 5 mM) on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic entorhino-hippocampal tissue cultures. We found that acute exposure to NH4Cl reversibly reduced excitatory synaptic transmission and affected CA3-CA1 synapses. Notably, NH4Cl modified astrocytic, but not CA1 pyramidal neuron, passive intrinsic properties. To further explore the role of astrocytes in NH4Cl-induced attenuation of synaptic transmission, we used methionine sulfoximine to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance in the central nervous system. Inhibition of glutamine synthetase effectively prevented the downregulation of excitatory synaptic activity, underscoring the significant role of astrocytes in adjusting excitatory synapses during acute ammonia elevation.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.