微表达可用作自闭症谱系障碍的生物标记吗?

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Neuroinformatics Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI:10.3389/fninf.2024.1435091
Mindi Ruan, Na Zhang, Xiangxu Yu, Wenqi Li, Chuanbo Hu, Paula J Webster, Lynn K Paul, Shuo Wang, Xin Li
{"title":"微表达可用作自闭症谱系障碍的生物标记吗?","authors":"Mindi Ruan, Na Zhang, Xiangxu Yu, Wenqi Li, Chuanbo Hu, Paula J Webster, Lynn K Paul, Shuo Wang, Xin Li","doi":"10.3389/fninf.2024.1435091","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Early and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis.</p><p><strong>Methods: </strong>This study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet).</p><p><strong>Results: </strong>Despite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality.</p><p><strong>Discussion: </strong>Our research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1435091"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can micro-expressions be used as a biomarker for autism spectrum disorder?\",\"authors\":\"Mindi Ruan, Na Zhang, Xiangxu Yu, Wenqi Li, Chuanbo Hu, Paula J Webster, Lynn K Paul, Shuo Wang, Xin Li\",\"doi\":\"10.3389/fninf.2024.1435091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Early and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis.</p><p><strong>Methods: </strong>This study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet).</p><p><strong>Results: </strong>Despite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality.</p><p><strong>Discussion: </strong>Our research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"18 \",\"pages\":\"1435091\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2024.1435091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1435091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:自闭症谱系障碍(ASD)的早期准确诊断对有效干预至关重要,但由于其复杂性和多变性,诊断仍是一项重大挑战。微表情是一种快速、不自主的面部动作,表明潜在的情绪状态。微表情能否作为诊断 ASD 的有效生物标记尚不得而知:本研究介绍了一种新颖的机器学习(ML)框架,通过关注面部微表情来推进 ASD 诊断。我们采用最先进的算法来检测和分析视频数据中的微表情,旨在找出可将 ASD 患者与发育正常的同龄人区分开来的独特模式。我们的计算方法包括三个关键部分:(1) 使用浅层光流三流 CNN(SOFTNet)发现微表情;(2) 通过 Micron-BERT 提取特征;(3) 使用三个竞争模型(MLP、SVM 和 ResNet)的多数票进行分类:尽管采用了复杂的方法,但由于视频数据的质量问题,ML 框架可靠识别 ASD 特定模式的能力受到了限制。这一局限性引发了人们对使用微表情进行 ASD 诊断的有效性的担忧,并指出了提高视频数据质量的必要性:我们的研究对微表情的诊断价值进行了谨慎的评估,强调了在行为成像和多模态人工智能技术方面取得进步的必要性,以便在针对 ASD 的临床环境中充分利用人工智能的全部功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can micro-expressions be used as a biomarker for autism spectrum disorder?

Introduction: Early and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis.

Methods: This study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet).

Results: Despite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality.

Discussion: Our research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
期刊最新文献
Quantitative assessment of neurodevelopmental maturation: a comprehensive systematic literature review of artificial intelligence-based brain age prediction in pediatric populations. Spectral graph convolutional neural network for Alzheimer's disease diagnosis and multi-disease categorization from functional brain changes in magnetic resonance images. Commentary: Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch. Fuzzy C-means clustering algorithm applied in computed tomography images of patients with intracranial hemorrhage. Early detection of mild cognitive impairment through neuropsychological tests in population screenings: a decision support system integrating ontologies and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1