Louis-Philippe Leroux, Visnu Chaparro, Alexandra Plouffe, Brent Johnston, Maritza Jaramillo
{"title":"弓形虫感染会诱导巨噬细胞表达趋化因子 CXCL16,从而促进 CXCR6+ 细胞的趋化吸引。","authors":"Louis-Philippe Leroux, Visnu Chaparro, Alexandra Plouffe, Brent Johnston, Maritza Jaramillo","doi":"10.1128/iai.00309-24","DOIUrl":null,"url":null,"abstract":"<p><p>CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite <i>Toxoplasma gondii</i> (<i>T. gondii</i>) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II <i>T. gondii</i> strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble <i>T. gondii</i> antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. <i>Cxcl16</i> mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon <i>T. gondii</i> infection. Importantly, conditioned medium (CM) collected from <i>T. gondii</i>-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, <i>T. gondii</i>-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0030924"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556035/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Toxoplasma gondii</i> infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6<sup>+</sup> cells.\",\"authors\":\"Louis-Philippe Leroux, Visnu Chaparro, Alexandra Plouffe, Brent Johnston, Maritza Jaramillo\",\"doi\":\"10.1128/iai.00309-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite <i>Toxoplasma gondii</i> (<i>T. gondii</i>) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II <i>T. gondii</i> strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble <i>T. gondii</i> antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. <i>Cxcl16</i> mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon <i>T. gondii</i> infection. Importantly, conditioned medium (CM) collected from <i>T. gondii</i>-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, <i>T. gondii</i>-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0030924\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00309-24\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00309-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
CXCL16 是一种多方面的趋化因子,由巨噬细胞和其他免疫细胞表达,以应对病毒和细菌病原体。然而,很少有研究调查了它在寄生虫感染中的作用。细胞内寄生虫弓形虫(T. gondii)是弓形虫病的病原体,这种感染对免疫力低下的人和急性感染孕妇的发育中胎儿具有潜在的有害影响。趋化因子是宿主防御的关键介质,因此,寄生虫为确保其生存而经常采用的一种颠覆策略就是对趋化因子的表达进行失调。在此,我们报告了 I 型和 II 型淋球菌菌株在受感染的骨髓源性巨噬细胞(BMDM)中上调 CXCL16 跨膜和可溶性形式的表达。接触可溶性淋球菌抗原(STAg)和排泄-分泌蛋白(TgESP)会诱导 CXCL16。淋球菌感染后,Cxcl16 mRNA丰度和CXCL16蛋白水平以时间依赖性方式增加。重要的是,从T. gondi感染的野生型(WT)巨噬细胞培养物中收集的条件培养基(CM)能促进表达CXCL16同源受体CXCR6的RAW264.7细胞的迁移,中和抗CXCL16抗体或使用CXCL16基因敲除(KO)巨噬细胞的CM能显著降低这种效应。最后,淋球菌驱动的 CXCL16 表达似乎能调节细胞因子诱导的(IL-4 + IL-13)替代巨噬细胞活化和 M2 表型标记表达。要确定这种趋化因子是否有助于弓形虫病的发病机制并阐明其潜在的分子机制,还需要进一步的研究。
Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6+ cells.
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.