食肉蚂蚁的觅食:综述。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY Insect Science Pub Date : 2024-10-21 DOI:10.1111/1744-7917.13461
Alain Dejean, Jérôme Orivel, Xim Cerdá, Frédéric Azémar, Bruno Corbara, Axel Touchard
{"title":"食肉蚂蚁的觅食:综述。","authors":"Alain Dejean, Jérôme Orivel, Xim Cerdá, Frédéric Azémar, Bruno Corbara, Axel Touchard","doi":"10.1111/1744-7917.13461","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a \"nomadic phase\" when the colony relocates between different places and a \"stationary phase\" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foraging by predatory ants: A review.\",\"authors\":\"Alain Dejean, Jérôme Orivel, Xim Cerdá, Frédéric Azémar, Bruno Corbara, Axel Touchard\",\"doi\":\"10.1111/1744-7917.13461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a \\\"nomadic phase\\\" when the colony relocates between different places and a \\\"stationary phase\\\" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13461\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13461","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇综述中,我们表明食肉蚂蚁的觅食行为范围很广,这在它们的系统发育距离和蚁群大小、生活史、筑巢栖息地以及猎物多样性的巨大差异的情况下是意料之中的。大多数蚂蚁是中心觅食者,利用视觉和嗅觉发现猎物。地栖物种可以独自觅食,这是它们的祖先形式,但一般会招募巢友来捕获大型猎物或一群猎物。一般来说,蚂蚁是杂食性的,但有些种类是严格的捕食者,它们捕食碎屑无脊椎动物或节肢动物卵,而那些专门捕食白蚁或其他蚂蚁的蚂蚁通常有侦察兵,它们会确定目标的位置,然后发动突袭。它们可以使用一些化合物来减轻这一任务,包括化学微不足道、拟态和引发顺从行为的毒液。军蚁包括 8 个多利南科(Dorylinae)和其他亚科的一些种类,它们都有无翅的蚁后并组成突袭队。旧大陆的军蚁会不定期迁徙到新的筑巢地。大多数捕食其他蚂蚁育雏的新大陆种类的觅食活动受其生物周期的调节,即 "游牧期 "和 "静止期 "交替进行,前者是蚁群在不同地点之间迁移,后者是蚁群停留在构成一个中心地点的栖息地。在树栖蚂蚁中,主要种类成群觅食,用视觉探测猎物,但也会利用振动,尤其是与蕈菌类植物为伴时。Allomerus 属和 Azteca 属中的一些种类利用真菌建造一个带有小孔的长廊形陷阱,躲在陷阱下伏击猎物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Foraging by predatory ants: A review.

In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a "nomadic phase" when the colony relocates between different places and a "stationary phase" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
期刊最新文献
Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae). Discovery and characterization of a novel Lepidoptera-specific antimicrobial peptide from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Lufenuron affects the fecundity of Panonychus citri by regulating the methyl farnesoate-ponasterone A network. Tissue-specific alternative splicing and the functional differentiation of LmLPMO15-1 in Locusta migratoria. Single-nucleus RNA sequencing reveals midgut cellular heterogeneity and transcriptional profiles in Bombyx mori cytoplasmic polyhedrosis virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1