Michael J Ray, Kathleen L Lacanilao, Maela Robyne Lazaro, Luke C Strnad, Jon P Furuno, Kelly Royster, Jessina C McGregor
{"title":"验证电子健康记录数据,识别医院相关艰难梭菌感染,进行回顾性研究。","authors":"Michael J Ray, Kathleen L Lacanilao, Maela Robyne Lazaro, Luke C Strnad, Jon P Furuno, Kelly Royster, Jessina C McGregor","doi":"10.1017/ice.2024.140","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clostridioides difficile</i> infection (CDI) research relies upon accurate identification of cases when using electronic health record (EHR) data. We developed and validated a multi-component algorithm to identify hospital-associated CDI using EHR data and determined that the tandem of CDI-specific treatment and laboratory testing has 97% accuracy in identifying HA-CDI cases.</p>","PeriodicalId":13663,"journal":{"name":"Infection Control and Hospital Epidemiology","volume":" ","pages":"1-3"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of electronic health record data to identify hospital-associated <i>Clostridioides difficile</i> infections for retrospective research.\",\"authors\":\"Michael J Ray, Kathleen L Lacanilao, Maela Robyne Lazaro, Luke C Strnad, Jon P Furuno, Kelly Royster, Jessina C McGregor\",\"doi\":\"10.1017/ice.2024.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Clostridioides difficile</i> infection (CDI) research relies upon accurate identification of cases when using electronic health record (EHR) data. We developed and validated a multi-component algorithm to identify hospital-associated CDI using EHR data and determined that the tandem of CDI-specific treatment and laboratory testing has 97% accuracy in identifying HA-CDI cases.</p>\",\"PeriodicalId\":13663,\"journal\":{\"name\":\"Infection Control and Hospital Epidemiology\",\"volume\":\" \",\"pages\":\"1-3\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection Control and Hospital Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/ice.2024.140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Control and Hospital Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/ice.2024.140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
摘要
艰难梭菌感染(CDI)研究有赖于使用电子健康记录(EHR)数据准确识别病例。我们开发并验证了使用 EHR 数据识别医院相关 CDI 的多组件算法,并确定 CDI 特异性治疗和实验室检测串联在一起在识别 HA-CDI 病例方面的准确率为 97%。
Validation of electronic health record data to identify hospital-associated Clostridioides difficile infections for retrospective research.
Clostridioides difficile infection (CDI) research relies upon accurate identification of cases when using electronic health record (EHR) data. We developed and validated a multi-component algorithm to identify hospital-associated CDI using EHR data and determined that the tandem of CDI-specific treatment and laboratory testing has 97% accuracy in identifying HA-CDI cases.
期刊介绍:
Infection Control and Hospital Epidemiology provides original, peer-reviewed scientific articles for anyone involved with an infection control or epidemiology program in a hospital or healthcare facility. Written by infection control practitioners and epidemiologists and guided by an editorial board composed of the nation''s leaders in the field, ICHE provides a critical forum for this vital information.