{"title":"Xaliproden纳米级锆卟啉金属有机框架(XAL-NPMOF)促进氧化和炎症损伤后的光感受器再生。","authors":"Yajie Wang, Bo Yuan, Wei Liu, Jianlin Cui, Xueyan Zhou, Liyun Yuan, Zihao Deng, Yuhao Li, Xiaoyong Yuan","doi":"10.2147/IJN.S477011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Age-related macular degeneration (AMD) is becoming the leading cause of blindness in the aged population. The death of photoreceptors is the principal event which is lack of curative treatment. Xaliproden, a highly selective synthetic 5-OH-tryptamine (5HT) 1A receptor agonist, has the neuroprotective potential. However, its application has been limited by the insoluble formulation, low utilization efficiency and side effects caused by systemic administration.</p><p><strong>Methods: </strong>Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was used as a skeleton and loaded with xaliproden (XAL) to prepare a novel kind of nanoparticle, namely, XAL-NPMOF. The human umbilical vein endothelial cells, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of XAL-NPMOF both in vitro and in vivo. A photoreceptor degeneration model was generated by intense light injury in adult zebrafish and XAL-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration, inflammatory response and visual function were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and optomotor response analysis.</p><p><strong>Results: </strong>Following a single XAL-NPMOF intraocular injection, the injured retina underwent the faster photoreceptor regeneration with a recovery of visual function via promoting cell proliferation, suppressing the inflammatory responses and increasing the expression of antioxidases.</p><p><strong>Conclusion: </strong>As an amplifier, NPMOF can enhance the anti-inflammatory efficacy and neuroprotective effect of xaliproden. XAL-NPMOF could be a novel and convenient option for the treatment of AMD.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"10387-10400"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490251/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Xaliproden Nanoscale Zirconium-Porphyrin Metal-Organic Framework (XAL-NPMOF) Promotes Photoreceptor Regeneration Following Oxidative and Inflammatory Insults.\",\"authors\":\"Yajie Wang, Bo Yuan, Wei Liu, Jianlin Cui, Xueyan Zhou, Liyun Yuan, Zihao Deng, Yuhao Li, Xiaoyong Yuan\",\"doi\":\"10.2147/IJN.S477011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Age-related macular degeneration (AMD) is becoming the leading cause of blindness in the aged population. The death of photoreceptors is the principal event which is lack of curative treatment. Xaliproden, a highly selective synthetic 5-OH-tryptamine (5HT) 1A receptor agonist, has the neuroprotective potential. However, its application has been limited by the insoluble formulation, low utilization efficiency and side effects caused by systemic administration.</p><p><strong>Methods: </strong>Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was used as a skeleton and loaded with xaliproden (XAL) to prepare a novel kind of nanoparticle, namely, XAL-NPMOF. The human umbilical vein endothelial cells, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of XAL-NPMOF both in vitro and in vivo. A photoreceptor degeneration model was generated by intense light injury in adult zebrafish and XAL-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration, inflammatory response and visual function were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and optomotor response analysis.</p><p><strong>Results: </strong>Following a single XAL-NPMOF intraocular injection, the injured retina underwent the faster photoreceptor regeneration with a recovery of visual function via promoting cell proliferation, suppressing the inflammatory responses and increasing the expression of antioxidases.</p><p><strong>Conclusion: </strong>As an amplifier, NPMOF can enhance the anti-inflammatory efficacy and neuroprotective effect of xaliproden. XAL-NPMOF could be a novel and convenient option for the treatment of AMD.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"19 \",\"pages\":\"10387-10400\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490251/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S477011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S477011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
The Xaliproden Nanoscale Zirconium-Porphyrin Metal-Organic Framework (XAL-NPMOF) Promotes Photoreceptor Regeneration Following Oxidative and Inflammatory Insults.
Background: Age-related macular degeneration (AMD) is becoming the leading cause of blindness in the aged population. The death of photoreceptors is the principal event which is lack of curative treatment. Xaliproden, a highly selective synthetic 5-OH-tryptamine (5HT) 1A receptor agonist, has the neuroprotective potential. However, its application has been limited by the insoluble formulation, low utilization efficiency and side effects caused by systemic administration.
Methods: Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was used as a skeleton and loaded with xaliproden (XAL) to prepare a novel kind of nanoparticle, namely, XAL-NPMOF. The human umbilical vein endothelial cells, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of XAL-NPMOF both in vitro and in vivo. A photoreceptor degeneration model was generated by intense light injury in adult zebrafish and XAL-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration, inflammatory response and visual function were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and optomotor response analysis.
Results: Following a single XAL-NPMOF intraocular injection, the injured retina underwent the faster photoreceptor regeneration with a recovery of visual function via promoting cell proliferation, suppressing the inflammatory responses and increasing the expression of antioxidases.
Conclusion: As an amplifier, NPMOF can enhance the anti-inflammatory efficacy and neuroprotective effect of xaliproden. XAL-NPMOF could be a novel and convenient option for the treatment of AMD.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.