Jianyu Wang, Yuankang Zou, Ruili Guan, Shuangshuang Tan, Lihong Su, Zaihua Zhao, Zipeng Cao, Kunyan Jiang, Tao Wang, Gang Zheng
{"title":"补铜可减轻缺氧诱导的神经细胞铁蛋白沉积和氧化应激。","authors":"Jianyu Wang, Yuankang Zou, Ruili Guan, Shuangshuang Tan, Lihong Su, Zaihua Zhao, Zipeng Cao, Kunyan Jiang, Tao Wang, Gang Zheng","doi":"10.3892/ijmm.2024.5441","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress. Cell viability was assessed using the Cell Counting Kit‑8 assay, mitochondrial structure was examined with a transmission electron microscope, intracellular ferrous ions and lipid reactive oxygen species levels in HT22 cells were measured using FerroOrange and BODIPY 581/591 C11 staining, copper content was determined using graphite furnace atomic absorption spectroscopy, and gene and protein expression were analyzed by reverse transcription‑quantitative PCR and western blotting. The present findings indicated that hypoxic exposure may lead to reduced cell viability, along with the upregulation of various markers associated with ferroptosis. Furthermore, hypoxia elevated the levels of reactive oxygen species, hydrogen peroxide and malondialdehyde, and decreased the activity of superoxide dismutase 1 (SOD1) in HT22 cells. In addition, the intracellular copper concentration exhibited a notable decrease, while supplementation with an appropriate dose of copper effectively shielded neurons from hypoxia‑induced oxidative stress and ferroptosis, and elevated cell viability in hypoxia‑exposed HT22 cells through the copper chaperone for superoxide dismutase/SOD1/glutathione peroxidase 4 axis. In conclusion, the present study identified a novel function of copper in protecting neurons from oxidative stress and ferroptosis under hypoxic conditions, providing fresh insights into the therapeutic potential of copper in mitigating hypoxia‑induced neuronal injury.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Copper supplementation alleviates hypoxia‑induced ferroptosis and oxidative stress in neuronal cells.\",\"authors\":\"Jianyu Wang, Yuankang Zou, Ruili Guan, Shuangshuang Tan, Lihong Su, Zaihua Zhao, Zipeng Cao, Kunyan Jiang, Tao Wang, Gang Zheng\",\"doi\":\"10.3892/ijmm.2024.5441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress. Cell viability was assessed using the Cell Counting Kit‑8 assay, mitochondrial structure was examined with a transmission electron microscope, intracellular ferrous ions and lipid reactive oxygen species levels in HT22 cells were measured using FerroOrange and BODIPY 581/591 C11 staining, copper content was determined using graphite furnace atomic absorption spectroscopy, and gene and protein expression were analyzed by reverse transcription‑quantitative PCR and western blotting. The present findings indicated that hypoxic exposure may lead to reduced cell viability, along with the upregulation of various markers associated with ferroptosis. Furthermore, hypoxia elevated the levels of reactive oxygen species, hydrogen peroxide and malondialdehyde, and decreased the activity of superoxide dismutase 1 (SOD1) in HT22 cells. In addition, the intracellular copper concentration exhibited a notable decrease, while supplementation with an appropriate dose of copper effectively shielded neurons from hypoxia‑induced oxidative stress and ferroptosis, and elevated cell viability in hypoxia‑exposed HT22 cells through the copper chaperone for superoxide dismutase/SOD1/glutathione peroxidase 4 axis. In conclusion, the present study identified a novel function of copper in protecting neurons from oxidative stress and ferroptosis under hypoxic conditions, providing fresh insights into the therapeutic potential of copper in mitigating hypoxia‑induced neuronal injury.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2024.5441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Copper supplementation alleviates hypoxia‑induced ferroptosis and oxidative stress in neuronal cells.
Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress. Cell viability was assessed using the Cell Counting Kit‑8 assay, mitochondrial structure was examined with a transmission electron microscope, intracellular ferrous ions and lipid reactive oxygen species levels in HT22 cells were measured using FerroOrange and BODIPY 581/591 C11 staining, copper content was determined using graphite furnace atomic absorption spectroscopy, and gene and protein expression were analyzed by reverse transcription‑quantitative PCR and western blotting. The present findings indicated that hypoxic exposure may lead to reduced cell viability, along with the upregulation of various markers associated with ferroptosis. Furthermore, hypoxia elevated the levels of reactive oxygen species, hydrogen peroxide and malondialdehyde, and decreased the activity of superoxide dismutase 1 (SOD1) in HT22 cells. In addition, the intracellular copper concentration exhibited a notable decrease, while supplementation with an appropriate dose of copper effectively shielded neurons from hypoxia‑induced oxidative stress and ferroptosis, and elevated cell viability in hypoxia‑exposed HT22 cells through the copper chaperone for superoxide dismutase/SOD1/glutathione peroxidase 4 axis. In conclusion, the present study identified a novel function of copper in protecting neurons from oxidative stress and ferroptosis under hypoxic conditions, providing fresh insights into the therapeutic potential of copper in mitigating hypoxia‑induced neuronal injury.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.