Tatiana Vinasco-Sandoval, Sandra Moratille, Françoise Crechet, Yasmina Mesloub, Juliette Montanari, Frederic Auvré, Jean-François Deleuze, Nicolas Foray, Nicolas O Fortunel, Michele T Martin
{"title":"长非编码 VIM-AS1:放疗后乳腺纤维化易感性的生物标志物和转化生长因子 Beta1 驱动纤维化的启动子。","authors":"Tatiana Vinasco-Sandoval, Sandra Moratille, Françoise Crechet, Yasmina Mesloub, Juliette Montanari, Frederic Auvré, Jean-François Deleuze, Nicolas Foray, Nicolas O Fortunel, Michele T Martin","doi":"10.1016/j.ijrobp.2024.09.049","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work.</p><p><strong>Methods and materials: </strong>Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts.</p><p><strong>Results: </strong>Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition.</p><p><strong>Conclusions: </strong>Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.</p>","PeriodicalId":14215,"journal":{"name":"International Journal of Radiation Oncology Biology Physics","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Noncoding VIM-AS1: Biomarker of Breast Fibrosis Susceptibility After Radiation Therapy and Promoter of Transforming Growth Factor Beta1-Driven Fibrosis.\",\"authors\":\"Tatiana Vinasco-Sandoval, Sandra Moratille, Françoise Crechet, Yasmina Mesloub, Juliette Montanari, Frederic Auvré, Jean-François Deleuze, Nicolas Foray, Nicolas O Fortunel, Michele T Martin\",\"doi\":\"10.1016/j.ijrobp.2024.09.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work.</p><p><strong>Methods and materials: </strong>Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts.</p><p><strong>Results: </strong>Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition.</p><p><strong>Conclusions: </strong>Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.</p>\",\"PeriodicalId\":14215,\"journal\":{\"name\":\"International Journal of Radiation Oncology Biology Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Oncology Biology Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijrobp.2024.09.049\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Oncology Biology Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijrobp.2024.09.049","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Long Noncoding VIM-AS1: Biomarker of Breast Fibrosis Susceptibility After Radiation Therapy and Promoter of Transforming Growth Factor Beta1-Driven Fibrosis.
Purpose: Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work.
Methods and materials: Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts.
Results: Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition.
Conclusions: Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.
期刊介绍:
International Journal of Radiation Oncology • Biology • Physics (IJROBP), known in the field as the Red Journal, publishes original laboratory and clinical investigations related to radiation oncology, radiation biology, medical physics, and both education and health policy as it relates to the field.
This journal has a particular interest in original contributions of the following types: prospective clinical trials, outcomes research, and large database interrogation. In addition, it seeks reports of high-impact innovations in single or combined modality treatment, tumor sensitization, normal tissue protection (including both precision avoidance and pharmacologic means), brachytherapy, particle irradiation, and cancer imaging. Technical advances related to dosimetry and conformal radiation treatment planning are of interest, as are basic science studies investigating tumor physiology and the molecular biology underlying cancer and normal tissue radiation response.