Swarna Bale, Priyanka Verma, Bharath Yalavarthi, Matija Bajželj, Syed Am Hasan, Jenna N Silverman, Katherine Broderick, Kris A Shah, Timothy Hamill, Dinesh Khanna, Alexander B Sigalov, Swati Bhattacharyya, John Varga
{"title":"抑制髓系细胞上表达的触发受体-1 信号,改善皮肤纤维化。","authors":"Swarna Bale, Priyanka Verma, Bharath Yalavarthi, Matija Bajželj, Syed Am Hasan, Jenna N Silverman, Katherine Broderick, Kris A Shah, Timothy Hamill, Dinesh Khanna, Alexander B Sigalov, Swati Bhattacharyya, John Varga","doi":"10.1172/jci.insight.176319","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. Transforming growth factor-beta (TGF-β) is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown. By amplifying pattern recognition receptor signaling, Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) is implicated in multiple inflammatory conditions. In this study, we used novel ligand-independent TREM-1 inhibitors in order to investigate the pathogenic role of TREM-1 in SSc, using preclinical models of fibrosis, and explanted SSc skin fibroblasts. Selective pharmacological TREM-1 blockade prevented and reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and suggest a potential therapeutic benefit for TREM-1 inhibition.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibiting Triggering Receptor Expressed on Myeloid Cells-1 signaling to ameliorate skin fibrosis.\",\"authors\":\"Swarna Bale, Priyanka Verma, Bharath Yalavarthi, Matija Bajželj, Syed Am Hasan, Jenna N Silverman, Katherine Broderick, Kris A Shah, Timothy Hamill, Dinesh Khanna, Alexander B Sigalov, Swati Bhattacharyya, John Varga\",\"doi\":\"10.1172/jci.insight.176319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. Transforming growth factor-beta (TGF-β) is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown. By amplifying pattern recognition receptor signaling, Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) is implicated in multiple inflammatory conditions. In this study, we used novel ligand-independent TREM-1 inhibitors in order to investigate the pathogenic role of TREM-1 in SSc, using preclinical models of fibrosis, and explanted SSc skin fibroblasts. Selective pharmacological TREM-1 blockade prevented and reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and suggest a potential therapeutic benefit for TREM-1 inhibition.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.176319\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.176319","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Inhibiting Triggering Receptor Expressed on Myeloid Cells-1 signaling to ameliorate skin fibrosis.
Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. Transforming growth factor-beta (TGF-β) is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown. By amplifying pattern recognition receptor signaling, Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) is implicated in multiple inflammatory conditions. In this study, we used novel ligand-independent TREM-1 inhibitors in order to investigate the pathogenic role of TREM-1 in SSc, using preclinical models of fibrosis, and explanted SSc skin fibroblasts. Selective pharmacological TREM-1 blockade prevented and reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and suggest a potential therapeutic benefit for TREM-1 inhibition.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.