2型先天性免疫促进了赫尔曼斯基-普德拉克综合征肺纤维化的发展。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2024-10-15 DOI:10.1172/jci.insight.178381
Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J Introne, Bernadette R Gochuico, Yang Zhou
{"title":"2型先天性免疫促进了赫尔曼斯基-普德拉克综合征肺纤维化的发展。","authors":"Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J Introne, Bernadette R Gochuico, Yang Zhou","doi":"10.1172/jci.insight.178381","DOIUrl":null,"url":null,"abstract":"<p><p>Hermansky-Pudlak syndrome (HPS), particularly in types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on ILC2s and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from idiopathic pulmonary fibrosis (IPF) and HPS patients. Using bleomycin-challenged wild type (WT) and Hps1-/- mice we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted co-culture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through Amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome.\",\"authors\":\"Parand Sorkhdini, Kiran Klubock-Shukla, Selena Sheth, Dongqin Yang, Alina Xiaoyu Yang, Carmelissa Norbrun, Wendy J Introne, Bernadette R Gochuico, Yang Zhou\",\"doi\":\"10.1172/jci.insight.178381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hermansky-Pudlak syndrome (HPS), particularly in types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on ILC2s and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from idiopathic pulmonary fibrosis (IPF) and HPS patients. Using bleomycin-challenged wild type (WT) and Hps1-/- mice we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted co-culture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through Amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.178381\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.178381","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

赫尔曼斯基-普德拉克综合征(HPS),尤其是 1 型和 4 型,以进行性肺纤维化为特征,是发病和死亡的主要原因。然而,驱动 HPS 肺纤维化的确切机制尚未完全阐明。我们之前的研究表明,CHI3L1 驱动的纤维增殖可能是 HPS 相关纤维化的一个显著因素。本研究旨在探索CHI3L1-CRTH2相互作用对ILC2的作用,并探讨ILC2-成纤维细胞串联在HPS肺纤维化发展中的潜在贡献。我们在特发性肺纤维化(IPF)和HPS患者的肺组织中发现了ILC2。通过使用博莱霉素诱导的野生型(WT)小鼠和 Hps1-/- 小鼠,我们观察到 ILC2 被招募并似乎促进了 Hps1-/- 小鼠肺纤维化的发展,其中 CRTH2 在 ILC2 的积累中发挥了显著作用。我们对 ILC2 进行了分类,分析了纤维化相关基因和介质,并与原代肺 ILC2 和成纤维细胞进行了共培养实验。我们的研究结果表明,ILC2可通过安非他酮-表皮生长因子受体依赖机制直接刺激原发性肺成纤维细胞的增殖和分化。此外,使用IL-7Rcre驱动程序在ILC2群体中特异性过表达CHI3L1与纤维增殖增加有关,这表明ILC2介导的CRTH2依赖性机制可能有助于HPS相关肺纤维化中CHI3L1诱导的最佳纤维增殖修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome.

Hermansky-Pudlak syndrome (HPS), particularly in types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on ILC2s and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from idiopathic pulmonary fibrosis (IPF) and HPS patients. Using bleomycin-challenged wild type (WT) and Hps1-/- mice we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted co-culture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through Amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Aiolos promotes CXCR3 expression on TH1 cells via positive regulation of IFNγ/STAT1 signaling. Decoy-resistant IL-18 reshapes the tumor microenvironment and enhances rejection by anti-CTLA-4 in renal cell carcinoma. Mutation of CRYAB encoding a conserved mitochondrial chaperone and anti-apoptotic protein causes hereditary optic atrophy. NDR2 is critical for the osteoclastogenesis by regulating ULK1-mediated mitophagy. β-catenin disruption decreases macrophage exosomal α-SNAP and impedes Treg differentiation in acute liver injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1