{"title":"机器人辅助直肠切除术的人工智能混合生存评估系统:回顾性队列研究","authors":"Shiqian Zhang, Ge Zhang, Ming Wang, Song-Bin Guo, Fuqi Wang, Yun Li, Kaisaierjiang Kadier, Zhaokai Zhou, Pengpeng Zhang, Hao Chi, Chuchu Zhang, Quanbo Zhou, Pin Lyu, Shuaiya Zhao, Shuaixi Yang, Weitang Yuan","doi":"10.1200/PO.24.00089","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Robotic-assisted proctectomy (RAP) has emerged as the predominant surgical approach for patients with rectal cancer in recent years; although good postoperative patient recovery with accurate prediction is a guarantee of adaptive surveillance management, there is still a lack of easy-to-use prognostic tools and risk scores designed specifically for those patients undergoing RAP.</p><p><strong>Methods: </strong>This study used the electronic health records of 506 RAP participants, including a National Specialist Center for da Vinci Robotic Colorectal Surgery (NSCVRCS) meta cohort, and an independent external validation Sun Yat-sen Memorial Hospital cohort. In the NSCVRCS meta cohort, patients were divided into a discovery cohort (70%, n = 268), where the best-fit model was applied to model our prediction system, RAP-AIscore. Subsequently, an internal validation process for RAP-AIscore was conducted using a replication cohort (30%, n = 116). The study designed and implemented a large-scale artificial intelligence (AI) hybrid framework to identify the best strategy for building a survival assessment system, the RAP-AIscore, from 132 potential modeling scenarios through a combination of iterative cross-validation, Monte Carlo cross-validation, and bootstrap resampling. The 10 variables most relevant to clinical interpretability were identified on the basis of the AI hybrid optimal model values, which helps provide reliable prognostic survival guidance for new patients.</p><p><strong>Results: </strong>The consistent evaluation of discrimination, calibration, generalization, and prognostic value across cohorts reaffirmed the accuracy and robust extrapolation capability of this system. The 10 feature variables most associated with clinical interpretability on the basis of Shapley values were identified, facilitating reliable prognostic survival guidance for new patients.</p><p><strong>Conclusion: </strong>This study introduces a promising and informative tool, the RAP-AIscore, which can be explained through nomograms for interpreting clinical outcomes. It facilitates postoperative risk stratification management and enhances clinical management of prognosis for RAP patients.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"8 ","pages":"e2400089"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Hybrid Survival Assessment System for Robot-Assisted Proctectomy: A Retrospective Cohort Study.\",\"authors\":\"Shiqian Zhang, Ge Zhang, Ming Wang, Song-Bin Guo, Fuqi Wang, Yun Li, Kaisaierjiang Kadier, Zhaokai Zhou, Pengpeng Zhang, Hao Chi, Chuchu Zhang, Quanbo Zhou, Pin Lyu, Shuaiya Zhao, Shuaixi Yang, Weitang Yuan\",\"doi\":\"10.1200/PO.24.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Robotic-assisted proctectomy (RAP) has emerged as the predominant surgical approach for patients with rectal cancer in recent years; although good postoperative patient recovery with accurate prediction is a guarantee of adaptive surveillance management, there is still a lack of easy-to-use prognostic tools and risk scores designed specifically for those patients undergoing RAP.</p><p><strong>Methods: </strong>This study used the electronic health records of 506 RAP participants, including a National Specialist Center for da Vinci Robotic Colorectal Surgery (NSCVRCS) meta cohort, and an independent external validation Sun Yat-sen Memorial Hospital cohort. In the NSCVRCS meta cohort, patients were divided into a discovery cohort (70%, n = 268), where the best-fit model was applied to model our prediction system, RAP-AIscore. Subsequently, an internal validation process for RAP-AIscore was conducted using a replication cohort (30%, n = 116). The study designed and implemented a large-scale artificial intelligence (AI) hybrid framework to identify the best strategy for building a survival assessment system, the RAP-AIscore, from 132 potential modeling scenarios through a combination of iterative cross-validation, Monte Carlo cross-validation, and bootstrap resampling. The 10 variables most relevant to clinical interpretability were identified on the basis of the AI hybrid optimal model values, which helps provide reliable prognostic survival guidance for new patients.</p><p><strong>Results: </strong>The consistent evaluation of discrimination, calibration, generalization, and prognostic value across cohorts reaffirmed the accuracy and robust extrapolation capability of this system. The 10 feature variables most associated with clinical interpretability on the basis of Shapley values were identified, facilitating reliable prognostic survival guidance for new patients.</p><p><strong>Conclusion: </strong>This study introduces a promising and informative tool, the RAP-AIscore, which can be explained through nomograms for interpreting clinical outcomes. It facilitates postoperative risk stratification management and enhances clinical management of prognosis for RAP patients.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"8 \",\"pages\":\"e2400089\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO.24.00089\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO.24.00089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Artificial Intelligence Hybrid Survival Assessment System for Robot-Assisted Proctectomy: A Retrospective Cohort Study.
Purpose: Robotic-assisted proctectomy (RAP) has emerged as the predominant surgical approach for patients with rectal cancer in recent years; although good postoperative patient recovery with accurate prediction is a guarantee of adaptive surveillance management, there is still a lack of easy-to-use prognostic tools and risk scores designed specifically for those patients undergoing RAP.
Methods: This study used the electronic health records of 506 RAP participants, including a National Specialist Center for da Vinci Robotic Colorectal Surgery (NSCVRCS) meta cohort, and an independent external validation Sun Yat-sen Memorial Hospital cohort. In the NSCVRCS meta cohort, patients were divided into a discovery cohort (70%, n = 268), where the best-fit model was applied to model our prediction system, RAP-AIscore. Subsequently, an internal validation process for RAP-AIscore was conducted using a replication cohort (30%, n = 116). The study designed and implemented a large-scale artificial intelligence (AI) hybrid framework to identify the best strategy for building a survival assessment system, the RAP-AIscore, from 132 potential modeling scenarios through a combination of iterative cross-validation, Monte Carlo cross-validation, and bootstrap resampling. The 10 variables most relevant to clinical interpretability were identified on the basis of the AI hybrid optimal model values, which helps provide reliable prognostic survival guidance for new patients.
Results: The consistent evaluation of discrimination, calibration, generalization, and prognostic value across cohorts reaffirmed the accuracy and robust extrapolation capability of this system. The 10 feature variables most associated with clinical interpretability on the basis of Shapley values were identified, facilitating reliable prognostic survival guidance for new patients.
Conclusion: This study introduces a promising and informative tool, the RAP-AIscore, which can be explained through nomograms for interpreting clinical outcomes. It facilitates postoperative risk stratification management and enhances clinical management of prognosis for RAP patients.