{"title":"抗 NMDAR1 抗体会损害未成熟培养神经元的树突分支。","authors":"Pascal Jorratt, Aneta Petruskova","doi":"10.32725/jab.2024.019","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune disorder characterized by IgG antibodies targeting NMDAR. The prevalence is remarkably higher in women and some develop the condition during pregnancy. While immunotherapies have shown good outcomes for pregnant mothers and their infants, the impact on early neurodevelopment remains elusive. This study investigates the effects of anti-NMDAR antibody on the development of primary cortical cultures. Anti-NMDAR antibody was administered to the cultures at day in vitro 5 for the following 5 days to assess dendritic branching and arbor complexity, and at day in vitro 14 for measuring the expression of brain-derived neurotrophic factor (BDNF) and synaptic proteins. Immature cultured neurons treated with anti-NMDAR antibody exhibited impaired dendritic branching and arbor complexity. Interestingly, BDNF expression was unaffected in mature neurons. Additionally, GluN1 expression, a mandatory NMDAR subunit, was significantly reduced, while no significant alterations were observed in PSD-95, gephyrin and synaptophysin expression. These findings shed light on the structural and synaptic impacts of anti-NMDAR antibody on immature neurons, providing evidence for their consequences in early neuronal development.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"22 3","pages":"136-140"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons.\",\"authors\":\"Pascal Jorratt, Aneta Petruskova\",\"doi\":\"10.32725/jab.2024.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune disorder characterized by IgG antibodies targeting NMDAR. The prevalence is remarkably higher in women and some develop the condition during pregnancy. While immunotherapies have shown good outcomes for pregnant mothers and their infants, the impact on early neurodevelopment remains elusive. This study investigates the effects of anti-NMDAR antibody on the development of primary cortical cultures. Anti-NMDAR antibody was administered to the cultures at day in vitro 5 for the following 5 days to assess dendritic branching and arbor complexity, and at day in vitro 14 for measuring the expression of brain-derived neurotrophic factor (BDNF) and synaptic proteins. Immature cultured neurons treated with anti-NMDAR antibody exhibited impaired dendritic branching and arbor complexity. Interestingly, BDNF expression was unaffected in mature neurons. Additionally, GluN1 expression, a mandatory NMDAR subunit, was significantly reduced, while no significant alterations were observed in PSD-95, gephyrin and synaptophysin expression. These findings shed light on the structural and synaptic impacts of anti-NMDAR antibody on immature neurons, providing evidence for their consequences in early neuronal development.</p>\",\"PeriodicalId\":14912,\"journal\":{\"name\":\"Journal of applied biomedicine\",\"volume\":\"22 3\",\"pages\":\"136-140\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.32725/jab.2024.019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2024.019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons.
Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune disorder characterized by IgG antibodies targeting NMDAR. The prevalence is remarkably higher in women and some develop the condition during pregnancy. While immunotherapies have shown good outcomes for pregnant mothers and their infants, the impact on early neurodevelopment remains elusive. This study investigates the effects of anti-NMDAR antibody on the development of primary cortical cultures. Anti-NMDAR antibody was administered to the cultures at day in vitro 5 for the following 5 days to assess dendritic branching and arbor complexity, and at day in vitro 14 for measuring the expression of brain-derived neurotrophic factor (BDNF) and synaptic proteins. Immature cultured neurons treated with anti-NMDAR antibody exhibited impaired dendritic branching and arbor complexity. Interestingly, BDNF expression was unaffected in mature neurons. Additionally, GluN1 expression, a mandatory NMDAR subunit, was significantly reduced, while no significant alterations were observed in PSD-95, gephyrin and synaptophysin expression. These findings shed light on the structural and synaptic impacts of anti-NMDAR antibody on immature neurons, providing evidence for their consequences in early neuronal development.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.