当今的癌症研究和治疗--高度复杂且具有分子靶向性,但仍以经典理论为基础。

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Journal of applied biomedicine Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI:10.32725/jab.2024.016
Thomas W Grunt
{"title":"当今的癌症研究和治疗--高度复杂且具有分子靶向性,但仍以经典理论为基础。","authors":"Thomas W Grunt","doi":"10.32725/jab.2024.016","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer research is linked to modern life-sciences, encompassing achievements in virology, yeast-biology, molecular-biology, genetics, systems-biology, bioinformatics, and so on. With these fascinating developments, it's easy to overlook that the fundamental theories and treatment strategies were established in the early 20th century and have remained valid ever since. Therefore, tribute must be paid to the founders of the field. The main hypotheses on carcinogenesis, the genetic model and the metabolic model, and the concept of cancer-treatment with cytotoxic, targeted or metabolic drugs were proposed more than 100 years ago by great minds such as T. Boveri, O. Warburg, and P. Ehrlich. Hence nothing about these cancer concepts is really new. Through development of powerful new technologies, we have been able to decipher the mechanisms of malignant transformation, thus significantly advancing the field. Our own studies have been focused on the cross-talk between cell-growth-signaling and lipid-metabolism in ovarian cancer to find crossover-points for co-targeting in order to achieve synergistic treatment effects. Notably, a side-effect of the application of current methods of molecular-cell-biology is a deeper knowledge of the laws of normal cell-biology and cell-life. Thus we anticipate the field will advance rapidly in the near future.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"22 3","pages":"123-128"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Today's cancer research and treatment - highly sophisticated and molecularly targeted, yet firmly bolstered in the classical theories.\",\"authors\":\"Thomas W Grunt\",\"doi\":\"10.32725/jab.2024.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer research is linked to modern life-sciences, encompassing achievements in virology, yeast-biology, molecular-biology, genetics, systems-biology, bioinformatics, and so on. With these fascinating developments, it's easy to overlook that the fundamental theories and treatment strategies were established in the early 20th century and have remained valid ever since. Therefore, tribute must be paid to the founders of the field. The main hypotheses on carcinogenesis, the genetic model and the metabolic model, and the concept of cancer-treatment with cytotoxic, targeted or metabolic drugs were proposed more than 100 years ago by great minds such as T. Boveri, O. Warburg, and P. Ehrlich. Hence nothing about these cancer concepts is really new. Through development of powerful new technologies, we have been able to decipher the mechanisms of malignant transformation, thus significantly advancing the field. Our own studies have been focused on the cross-talk between cell-growth-signaling and lipid-metabolism in ovarian cancer to find crossover-points for co-targeting in order to achieve synergistic treatment effects. Notably, a side-effect of the application of current methods of molecular-cell-biology is a deeper knowledge of the laws of normal cell-biology and cell-life. Thus we anticipate the field will advance rapidly in the near future.</p>\",\"PeriodicalId\":14912,\"journal\":{\"name\":\"Journal of applied biomedicine\",\"volume\":\"22 3\",\"pages\":\"123-128\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.32725/jab.2024.016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2024.016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

癌症研究与现代生命科学息息相关,包括病毒学、酵母生物学、分子生物学、遗传学、系统生物学、生物信息学等领域的成就。在这些引人入胜的发展过程中,人们很容易忽视,基础理论和治疗策略早在 20 世纪初就已确立,并一直沿用至今。因此,我们必须向这一领域的奠基人致敬。100 多年前,T. Boveri、O. Warburg 和 P. Ehrlich 等伟人就提出了致癌的主要假说、遗传模式和代谢模式,以及使用细胞毒性药物、靶向药物或代谢药物治疗癌症的概念。因此,这些癌症概念并不新鲜。通过开发强大的新技术,我们已经能够破译恶性转化的机制,从而极大地推动了这一领域的发展。我们自己的研究重点是卵巢癌中细胞生长信号转导和脂质代谢之间的交叉对话,以找到共同靶点,实现协同治疗效果。值得注意的是,应用当前分子细胞生物学方法的一个副作用是加深了对正常细胞生物学和细胞生命规律的认识。因此,我们预计在不久的将来,这一领域将迅速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Today's cancer research and treatment - highly sophisticated and molecularly targeted, yet firmly bolstered in the classical theories.

Cancer research is linked to modern life-sciences, encompassing achievements in virology, yeast-biology, molecular-biology, genetics, systems-biology, bioinformatics, and so on. With these fascinating developments, it's easy to overlook that the fundamental theories and treatment strategies were established in the early 20th century and have remained valid ever since. Therefore, tribute must be paid to the founders of the field. The main hypotheses on carcinogenesis, the genetic model and the metabolic model, and the concept of cancer-treatment with cytotoxic, targeted or metabolic drugs were proposed more than 100 years ago by great minds such as T. Boveri, O. Warburg, and P. Ehrlich. Hence nothing about these cancer concepts is really new. Through development of powerful new technologies, we have been able to decipher the mechanisms of malignant transformation, thus significantly advancing the field. Our own studies have been focused on the cross-talk between cell-growth-signaling and lipid-metabolism in ovarian cancer to find crossover-points for co-targeting in order to achieve synergistic treatment effects. Notably, a side-effect of the application of current methods of molecular-cell-biology is a deeper knowledge of the laws of normal cell-biology and cell-life. Thus we anticipate the field will advance rapidly in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of applied biomedicine
Journal of applied biomedicine PHARMACOLOGY & PHARMACY-
CiteScore
2.40
自引率
7.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines. Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.
期刊最新文献
Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons. Astragaloside IV confronts amyloid-beta-induced astrocyte senescence via hsp90aa1. In vitro biological activities of Calamintha nepeta L. aqueous extracts. Olfactory event-related potentials (OERPs) and trigeminal event-related potentials (TERPs) in subjects after Covid-19 infection: single-center prospective study. Salivary glands - a new site of Helicobacter pylori occurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1