通过 15S- 和 15R- 脂氧合酶将二十碳五烯酸生物转化为 5S、15S- 和 5R、15R- 二羟基二十碳五烯酸。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of bioscience and bioengineering Pub Date : 2024-10-14 DOI:10.1016/j.jbiosc.2024.09.002
Jin Lee, Hyun-Ah Park, Kyung-Chul Shin, Deok-Kun Oh
{"title":"通过 15S- 和 15R- 脂氧合酶将二十碳五烯酸生物转化为 5S、15S- 和 5R、15R- 二羟基二十碳五烯酸。","authors":"Jin Lee, Hyun-Ah Park, Kyung-Chul Shin, Deok-Kun Oh","doi":"10.1016/j.jbiosc.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Resolvin E series (Rvs), such as RvE4 (5S,15S-dihydroxyeicosapentaenoic acid) and its stereoselective enantiomer (5R,15R-dihydroxyeicosapentaenoic acid), play an important role in promoting the resolution of inflammation and are derived from eicosapentaenoic acid (EPA) by M2 macrophage in human. However, they have been synthesized using expensive and inefficient chemical methods. Here, we performed efficient quantitative production of RvE4 and its enantiomer from EPA using Escherichia coli expressing double-dioxygenating 15S-lipoxygenase (15S-LOX) from Archangium violaceum and double-dioxygenating 15R-LOX from Sorangium cellulosum, respectively, with solvent, polymer, and adsorbent resin. The cell density, substrate concentration, solvent types and concentrations, polymer types and concentrations, and resin concentration were optimized for the enhanced bioconversion of EPA into RvE4 and its enantiomer. Under the optimized conditions, A. violaceum 15S-LOX and S. cellulosum 15R-LOX expressed in E. coli converted 6.0 mM EPA into 4.3 mM (1.44 g/L) RvE4 and 5.8 mM (1.94 g/L) RvE4 enantiomer in 60 min, with productivities of 4.3 and 5.8 mM/h and molar conversions of 72% and 97%, respectively. To date, these are the highest concentrations, productivities, and conversions of RvE4 and its enantiomer. The concentrations of RvE4 and its enantiomer obtained from the conversion of EPA with solvent, polymer, and resin were 2.5- and 3.2-fold higher than those without the additives, respectively.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases.\",\"authors\":\"Jin Lee, Hyun-Ah Park, Kyung-Chul Shin, Deok-Kun Oh\",\"doi\":\"10.1016/j.jbiosc.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resolvin E series (Rvs), such as RvE4 (5S,15S-dihydroxyeicosapentaenoic acid) and its stereoselective enantiomer (5R,15R-dihydroxyeicosapentaenoic acid), play an important role in promoting the resolution of inflammation and are derived from eicosapentaenoic acid (EPA) by M2 macrophage in human. However, they have been synthesized using expensive and inefficient chemical methods. Here, we performed efficient quantitative production of RvE4 and its enantiomer from EPA using Escherichia coli expressing double-dioxygenating 15S-lipoxygenase (15S-LOX) from Archangium violaceum and double-dioxygenating 15R-LOX from Sorangium cellulosum, respectively, with solvent, polymer, and adsorbent resin. The cell density, substrate concentration, solvent types and concentrations, polymer types and concentrations, and resin concentration were optimized for the enhanced bioconversion of EPA into RvE4 and its enantiomer. Under the optimized conditions, A. violaceum 15S-LOX and S. cellulosum 15R-LOX expressed in E. coli converted 6.0 mM EPA into 4.3 mM (1.44 g/L) RvE4 and 5.8 mM (1.94 g/L) RvE4 enantiomer in 60 min, with productivities of 4.3 and 5.8 mM/h and molar conversions of 72% and 97%, respectively. To date, these are the highest concentrations, productivities, and conversions of RvE4 and its enantiomer. The concentrations of RvE4 and its enantiomer obtained from the conversion of EPA with solvent, polymer, and resin were 2.5- and 3.2-fold higher than those without the additives, respectively.</p>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiosc.2024.09.002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2024.09.002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases.

Resolvin E series (Rvs), such as RvE4 (5S,15S-dihydroxyeicosapentaenoic acid) and its stereoselective enantiomer (5R,15R-dihydroxyeicosapentaenoic acid), play an important role in promoting the resolution of inflammation and are derived from eicosapentaenoic acid (EPA) by M2 macrophage in human. However, they have been synthesized using expensive and inefficient chemical methods. Here, we performed efficient quantitative production of RvE4 and its enantiomer from EPA using Escherichia coli expressing double-dioxygenating 15S-lipoxygenase (15S-LOX) from Archangium violaceum and double-dioxygenating 15R-LOX from Sorangium cellulosum, respectively, with solvent, polymer, and adsorbent resin. The cell density, substrate concentration, solvent types and concentrations, polymer types and concentrations, and resin concentration were optimized for the enhanced bioconversion of EPA into RvE4 and its enantiomer. Under the optimized conditions, A. violaceum 15S-LOX and S. cellulosum 15R-LOX expressed in E. coli converted 6.0 mM EPA into 4.3 mM (1.44 g/L) RvE4 and 5.8 mM (1.94 g/L) RvE4 enantiomer in 60 min, with productivities of 4.3 and 5.8 mM/h and molar conversions of 72% and 97%, respectively. To date, these are the highest concentrations, productivities, and conversions of RvE4 and its enantiomer. The concentrations of RvE4 and its enantiomer obtained from the conversion of EPA with solvent, polymer, and resin were 2.5- and 3.2-fold higher than those without the additives, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
期刊最新文献
Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases. Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process. Optimization of bacteriophage propagation in high-yield continuous culture (cellstat) meeting the constraints of industrial manufacturing processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1