去泛素化酶 USP47 通过减少蛋白质 O-GlcNAcylation 改善心肌肥大。

IF 2.6 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Pharmacology Pub Date : 2024-10-22 DOI:10.1097/FJC.0000000000001640
Yu Jiang, Wenyao Cai, Guangtao Lei, Guorong Cai, Qinghua Wu, Peng Lu
{"title":"去泛素化酶 USP47 通过减少蛋白质 O-GlcNAcylation 改善心肌肥大。","authors":"Yu Jiang, Wenyao Cai, Guangtao Lei, Guorong Cai, Qinghua Wu, Peng Lu","doi":"10.1097/FJC.0000000000001640","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiological or pathological stimuli. The ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the UPS, the role of deubiquitinating enzymes (DUBs) in cardiac hypertrophy is not well understood. Here, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes (NRCMs). Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the pro-hypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase (OGA). Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating OGA expression. We found that the restoration of PRMT5 abolished the pro-hypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deubiquitinase USP47 ameliorates cardiac hypertrophy through reducing protein O-GlcNAcylation.\",\"authors\":\"Yu Jiang, Wenyao Cai, Guangtao Lei, Guorong Cai, Qinghua Wu, Peng Lu\",\"doi\":\"10.1097/FJC.0000000000001640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiological or pathological stimuli. The ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the UPS, the role of deubiquitinating enzymes (DUBs) in cardiac hypertrophy is not well understood. Here, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes (NRCMs). Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the pro-hypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase (OGA). Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating OGA expression. We found that the restoration of PRMT5 abolished the pro-hypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.</p>\",\"PeriodicalId\":15212,\"journal\":{\"name\":\"Journal of Cardiovascular Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FJC.0000000000001640\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

当心脏受到生理或病理刺激时,心脏肥大是导致心力衰竭的一个重要危险因素。泛素-蛋白酶体系统(UPS)在心脏肥大的发病机制中起着关键作用。然而,作为泛素-蛋白酶体系统的关键组成部分,去泛素化酶(DUBs)在心肌肥厚中的作用尚不十分清楚。在这里,我们观察到去泛素化酶 USP47 在肥厚型心脏和血管紧张素 II(Ang II)刺激的新生大鼠心肌细胞(NRCMs)中的表达水平升高。腺病毒介导的功能增益和功能缺失方法表明,USP47 的过表达能显著减轻 Ang II 在体外和体内诱导的心脏肥大,而内源性 USP47 的缺乏则会促进 Ang II 的肥大效应。进一步的研究表明,USP47 通过控制 O-GlcNA 酶(OGA)的表达来抑制心肌细胞中的 O-GlcNA 化。从机制上讲,USP47 与蛋白精氨酸甲基转移酶 5(PRMT5)结合、去泛素化并使其稳定,从而上调了 OGA 的表达。我们发现,恢复 PRMT5 可消除体外沉默 USP47 的促肥大效应。因此,我们的研究结果首次证明了 USP47 参与心肌肥厚,并确定 USP47 为肥厚治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deubiquitinase USP47 ameliorates cardiac hypertrophy through reducing protein O-GlcNAcylation.

Cardiac hypertrophy is a crucial risk factor for heart failure when the heart is confronted with physiological or pathological stimuli. The ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of cardiac hypertrophy. However, as a key component of the UPS, the role of deubiquitinating enzymes (DUBs) in cardiac hypertrophy is not well understood. Here, we observed that the expression level of deubiquitinase USP47 was increased in hypertrophic hearts and angiotensin II (Ang II)-stimulated neonatal rat cardiomyocytes (NRCMs). Adenovirus-mediated gain- and loss-of-function approaches indicated that USP47 overexpression significantly attenuated Ang II-induced cardiac hypertrophy in vitro and in vivo, whereas endogenous USP47 deficiency promoted the pro-hypertrophic effect of Ang II. Further investigation demonstrated that USP47 inhibited O-GlcNAcylation in cardiomyocytes by controlling the expression of O-GlcNAcase (OGA). Mechanistically, USP47 bound, deubiquitinated, and stabilized protein arginine methyltransferase 5 (PRMT5), thus upregulating OGA expression. We found that the restoration of PRMT5 abolished the pro-hypertrophic effects of USP47 silence in vitro. Therefore, our results provide the first evidence of the involvement of USP47 in cardiac hypertrophy and identify USP47 as a potential target for hypertrophic therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
367
审稿时长
1 months
期刊介绍: Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias. Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.
期刊最新文献
Digoxin Loading Doses and Serum Digoxin Concentrations for Rate Control of Atrial Arrhythmias in Critically Ill Patients. Balancing the Interactions: Assessing Antiplatelet and Antiretroviral Therapy Drug-Drug Interactions in People Living with HIV. Interleukin-1 Blockade in Patients With ST-Segment Elevation Myocardial Infarction Across the Spectrum of Coronary Artery Disease Complexity. Melatonin attenuates cardiac dysfunction and inflammation in dilated cardiomyopathy via M2 macrophage polarization. High dose of liraglutide impairs renal function in female hypertensive rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1