基于结构的计算机辅助药物设计,确定天冬酰胺酰内肽酶抑制剂的潜在先导分子。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-10-15 DOI:10.1080/07391102.2024.2415677
Meenakshi Singh, Ian Steinke, Rajesh H Amin
{"title":"基于结构的计算机辅助药物设计,确定天冬酰胺酰内肽酶抑制剂的潜在先导分子。","authors":"Meenakshi Singh, Ian Steinke, Rajesh H Amin","doi":"10.1080/07391102.2024.2415677","DOIUrl":null,"url":null,"abstract":"<p><p>The enzyme Asparaginyl Endopeptidase (AEP) is associated with proteinopathy-related pathologies such as Alzheimer's disease (AD) and Frontal Temporal Dementia (FTD). The onset of pathologies by AEP is due to cleaved fragments forming protein aggregates resulting in neurodegeneration. Unfortunately, there are no clinically approved small molecule inhibitors for AEP, and therefore, it serves as an unmet medical need for the design and development of potential novel small molecules. In developing potential inhibitors for proteolytic activity, a structured approach utilizing structure-based computer-aided drug design (SB-CADD) parameters was employed. This involved virtual high throughput screening (vHTS) across various CNS-focused databases enriched with diverse functionality. We identified the top sixty ligands based on the glide XP-docking score out of 10 million ligands. The free binding energy was then calculated using MM-GBSA for all top selected molecules which resulted in discovering that AEPI-1 to AEPI-6 (Asparaginyl Endopeptidase inhibitors) displayed high affinity towards the catalytic triad. Further investigation determined that all top six hits form stable complexes during 50 ns molecular dynamic simulations. We also observed that AEPI-2 demonstrated the highest stability within the binding pockets. Post-MD analyses such as DCCM, PCA, PDF, and ADMET properties were also evaluated. By bridging all the observations, we observed these six molecules occupy the active site of the β-helix (β1, β3, and β4) of the S1 pocket and additional binding sites in α1 and β5, suggesting its suitability as a potential candidate for drug discovery against Asparaginyl Endopeptidase.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-based computer-aided drug design to identify potential lead molecules for Asparaginyl Endopeptidase inhibitors.\",\"authors\":\"Meenakshi Singh, Ian Steinke, Rajesh H Amin\",\"doi\":\"10.1080/07391102.2024.2415677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enzyme Asparaginyl Endopeptidase (AEP) is associated with proteinopathy-related pathologies such as Alzheimer's disease (AD) and Frontal Temporal Dementia (FTD). The onset of pathologies by AEP is due to cleaved fragments forming protein aggregates resulting in neurodegeneration. Unfortunately, there are no clinically approved small molecule inhibitors for AEP, and therefore, it serves as an unmet medical need for the design and development of potential novel small molecules. In developing potential inhibitors for proteolytic activity, a structured approach utilizing structure-based computer-aided drug design (SB-CADD) parameters was employed. This involved virtual high throughput screening (vHTS) across various CNS-focused databases enriched with diverse functionality. We identified the top sixty ligands based on the glide XP-docking score out of 10 million ligands. The free binding energy was then calculated using MM-GBSA for all top selected molecules which resulted in discovering that AEPI-1 to AEPI-6 (Asparaginyl Endopeptidase inhibitors) displayed high affinity towards the catalytic triad. Further investigation determined that all top six hits form stable complexes during 50 ns molecular dynamic simulations. We also observed that AEPI-2 demonstrated the highest stability within the binding pockets. Post-MD analyses such as DCCM, PCA, PDF, and ADMET properties were also evaluated. By bridging all the observations, we observed these six molecules occupy the active site of the β-helix (β1, β3, and β4) of the S1 pocket and additional binding sites in α1 and β5, suggesting its suitability as a potential candidate for drug discovery against Asparaginyl Endopeptidase.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2415677\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2415677","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

天冬酰胺酰内肽酶(AEP)与阿尔茨海默病(AD)和额颞叶痴呆症(FTD)等蛋白病相关的病症有关。AEP引发的病症是由于被裂解的片段形成蛋白质聚集,导致神经变性。遗憾的是,目前还没有临床批准的 AEP 小分子抑制剂,因此,在设计和开发潜在的新型小分子药物方面,它是一个尚未满足的医疗需求。在开发潜在的蛋白水解活性抑制剂时,我们采用了一种利用基于结构的计算机辅助药物设计(SB-CADD)参数的结构化方法。这包括在各种以中枢神经系统为重点、富含不同功能的数据库中进行虚拟高通量筛选(vHTS)。我们从 1,000 万个配体中根据 glide XP-对接得分确定了前六十个配体。然后使用 MM-GBSA 计算了所有入选分子的自由结合能,结果发现 AEPI-1 至 AEPI-6(天冬酰胺酰内肽酶抑制剂)对催化三元组具有很高的亲和力。进一步研究发现,在 50 毫微秒的分子动力学模拟过程中,所有前六个候选分子都形成了稳定的复合物。我们还观察到,AEPI-2 在结合口袋中表现出最高的稳定性。我们还对 DCCM、PCA、PDF 和 ADMET 特性等分子动力学模拟后分析进行了评估。通过连接所有观察结果,我们观察到这六个分子占据了 S1 口袋的 β-螺旋(β1、β3 和 β4)的活性位点以及 α1 和 β5 中的其他结合位点,这表明它适合作为天冬酰胺酰内肽酶药物研发的潜在候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure-based computer-aided drug design to identify potential lead molecules for Asparaginyl Endopeptidase inhibitors.

The enzyme Asparaginyl Endopeptidase (AEP) is associated with proteinopathy-related pathologies such as Alzheimer's disease (AD) and Frontal Temporal Dementia (FTD). The onset of pathologies by AEP is due to cleaved fragments forming protein aggregates resulting in neurodegeneration. Unfortunately, there are no clinically approved small molecule inhibitors for AEP, and therefore, it serves as an unmet medical need for the design and development of potential novel small molecules. In developing potential inhibitors for proteolytic activity, a structured approach utilizing structure-based computer-aided drug design (SB-CADD) parameters was employed. This involved virtual high throughput screening (vHTS) across various CNS-focused databases enriched with diverse functionality. We identified the top sixty ligands based on the glide XP-docking score out of 10 million ligands. The free binding energy was then calculated using MM-GBSA for all top selected molecules which resulted in discovering that AEPI-1 to AEPI-6 (Asparaginyl Endopeptidase inhibitors) displayed high affinity towards the catalytic triad. Further investigation determined that all top six hits form stable complexes during 50 ns molecular dynamic simulations. We also observed that AEPI-2 demonstrated the highest stability within the binding pockets. Post-MD analyses such as DCCM, PCA, PDF, and ADMET properties were also evaluated. By bridging all the observations, we observed these six molecules occupy the active site of the β-helix (β1, β3, and β4) of the S1 pocket and additional binding sites in α1 and β5, suggesting its suitability as a potential candidate for drug discovery against Asparaginyl Endopeptidase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing. Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design. Computational insights into pediatric adenovirus inhibitors: in silico strategies for drug repurposing. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1