微环境响应纳米药物:组织再生的一个前景广阔的方向。

IF 16.7 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL Military Medical Research Pub Date : 2024-10-21 DOI:10.1186/s40779-024-00573-0
Yuan Xiong, Bo-Bin Mi, Mohammad-Ali Shahbazi, Tian Xia, Jun Xiao
{"title":"微环境响应纳米药物:组织再生的一个前景广阔的方向。","authors":"Yuan Xiong, Bo-Bin Mi, Mohammad-Ali Shahbazi, Tian Xia, Jun Xiao","doi":"10.1186/s40779-024-00573-0","DOIUrl":null,"url":null,"abstract":"<p><p>Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":null,"pages":null},"PeriodicalIF":16.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration.\",\"authors\":\"Yuan Xiong, Bo-Bin Mi, Mohammad-Ali Shahbazi, Tian Xia, Jun Xiao\",\"doi\":\"10.1186/s40779-024-00573-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.</p>\",\"PeriodicalId\":18581,\"journal\":{\"name\":\"Military Medical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40779-024-00573-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-024-00573-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

严重的组织缺陷给人类健康带来了严峻的挑战,一直是造成死亡率的主要因素。复杂的病理微环境,尤其是这些缺陷内紊乱的免疫环境,对现有的组织再生策略构成了巨大障碍。然而,纳米生物技术的出现为免疫调节纳米医学开辟了一个新方向,为组织再生和修复提供了令人鼓舞的前景。本综述旨在收集免疫调节纳米医学在促进组织再生方面的最新进展。首先,我们将阐明缺损组织内局部免疫微环境的独特特征及其在组织再生中的关键作用。随后,我们探讨了免疫调节纳米系统的设计和功能特性。最后,我们探讨了纳米药物开发中临床转化的挑战和前景,旨在提出一种通过协同免疫调节和纳米药物整合来促进组织再生的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration.

Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Medical Research
Military Medical Research Medicine-General Medicine
CiteScore
38.40
自引率
2.80%
发文量
485
审稿时长
8 weeks
期刊介绍: Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.
期刊最新文献
International Alliance of Urolithiasis (IAU) consensus on miniaturized percutaneous nephrolithotomy. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Sexual dimorphism in the relationship between BMI and recent suicidal attempts in first-episode drug-naïve patients with major depressive disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1