代谢活跃的水牛组织中核源性线粒体琥珀酸脱氢酶基因的差异表达。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2024-10-19 DOI:10.1007/s11033-024-10022-9
E M Sadeesh, Anuj Malik, Madhuri S Lahamge, Pratiksha Singh
{"title":"代谢活跃的水牛组织中核源性线粒体琥珀酸脱氢酶基因的差异表达。","authors":"E M Sadeesh, Anuj Malik, Madhuri S Lahamge, Pratiksha Singh","doi":"10.1007/s11033-024-10022-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management.</p><p><strong>Materials and methods: </strong>RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues.</p><p><strong>Results: </strong>Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary.</p><p><strong>Conclusion: </strong>This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues.\",\"authors\":\"E M Sadeesh, Anuj Malik, Madhuri S Lahamge, Pratiksha Singh\",\"doi\":\"10.1007/s11033-024-10022-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management.</p><p><strong>Materials and methods: </strong>RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues.</p><p><strong>Results: </strong>Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary.</p><p><strong>Conclusion: </strong>This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.</p>\",\"PeriodicalId\":18755,\"journal\":{\"name\":\"Molecular Biology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11033-024-10022-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10022-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:水牛对农业至关重要,但与人类和实验动物相比,对水牛线粒体生物学的研究较少。这项研究考察了水牛肾脏、心脏、大脑和卵巢中线粒体琥珀酸脱氢酶(SDH)基因表达的组织特异性变化。了解这些变异有助于了解线粒体能量代谢及其对水牛健康和生产率的影响,揭示酶调控的奥秘以及改善家畜管理的潜力:重新分析了水牛肾脏、心脏、大脑和卵巢组织的 RNA-seq 数据,以探讨线粒体 SDH 基因的表达。SDH亚基(SDHA、SDHB、SDHC、SDHD)和组装因子(SDHAF1、SDHAF2、SDHAF3、SDHAF4)的表达量采用对折变化阈值进行评估,上调转录本的对折变化阈值为+ 1,下调转录本的对折变化阈值为- 1,显著性以p为标准:对健康雌性水牛不同组织的 RNA-seq 数据进行再分析后发现,SDH 亚基和组装因子的表达模式各不相同。SDHA、SDHB和SDHC在不同组织中的表达各不相同,而SDHAF2、SDHAF3和SDHAF4则表现出组织特异性。在特定组织比较中观察到 SDHA、SDHB 和几个组装因子的显著上调,而下调的转录本较少。基因本体论和 KEGG 通路分析将上调转录本与线粒体 ATP 合成和呼吸电子传递链联系起来。值得注意的是,线粒体功能的组织特异性变化在卵巢中尤为明显:本研究确定了水牛组织中不同的 SDH 基因表达模式,突出显示了卵巢中 SDHA、SDHB、SDHC 和组装因子的显著下调。这些发现强调了线粒体在组织特异性能量生产和代谢调节中的关键作用,提示了潜在的代谢适应性,并强调了线粒体复合体 II 的重要性。这些发现对提高饲料效率以及指导未来能量代谢紊乱的研究和治疗具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues.

Background: Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management.

Materials and methods: RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues.

Results: Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary.

Conclusion: This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
Correction: Value of miR-31 and mir-150-3p as diagnostic and prognostic biomarkers for breast cancer. Investigating antioxidant effects of hamamelitannin-conjugated zinc oxide nanoparticles on oxidative stress-Induced neurotoxicity in zebrafish larvae model. Role of TRIP13 in human cancer development. Adaptive responses of skeletal muscle to calcaneal tendon partial injury in rats: insights into remodeling and plasticity. Comparing the distribution of common human papillomavirus genotypes among the population of Fars province in southwest Iran with the genotypes included in the available HPV vaccines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1