胰高血糖素信号的中断会以 SLC7A2- 和 mTOR 依赖性方式促进胰岛非α细胞的增殖。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2024-10-20 DOI:10.1016/j.molmet.2024.102050
Katie C. Coate , Chunhua Dai , Ajay Singh , Jade Stanley , Brittney A. Covington , Amber Bradley , Favour Oladipupo , Yulong Gong , Scott Wisniewski , Katelyn Sellick , Erick Spears , Greg Poffenberger , Anna Marie R. Schornack , Alexandria Bustabad , Tyler Rodgers , Nandita Dey , Leonard D. Shultz , Dale L. Greiner , Hai Yan , Alvin C. Powers , E. Danielle Dean
{"title":"胰高血糖素信号的中断会以 SLC7A2- 和 mTOR 依赖性方式促进胰岛非α细胞的增殖。","authors":"Katie C. Coate ,&nbsp;Chunhua Dai ,&nbsp;Ajay Singh ,&nbsp;Jade Stanley ,&nbsp;Brittney A. Covington ,&nbsp;Amber Bradley ,&nbsp;Favour Oladipupo ,&nbsp;Yulong Gong ,&nbsp;Scott Wisniewski ,&nbsp;Katelyn Sellick ,&nbsp;Erick Spears ,&nbsp;Greg Poffenberger ,&nbsp;Anna Marie R. Schornack ,&nbsp;Alexandria Bustabad ,&nbsp;Tyler Rodgers ,&nbsp;Nandita Dey ,&nbsp;Leonard D. Shultz ,&nbsp;Dale L. Greiner ,&nbsp;Hai Yan ,&nbsp;Alvin C. Powers ,&nbsp;E. Danielle Dean","doi":"10.1016/j.molmet.2024.102050","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context.</div></div><div><h3>Methods</h3><div>We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth.</div></div><div><h3>Results</h3><div>Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, <em>gcgr</em> deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice.</div></div><div><h3>Conclusions</h3><div>Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"90 ","pages":"Article 102050"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interruption of glucagon signaling augments islet non-alpha cell proliferation in SLC7A2- and mTOR-dependent manners\",\"authors\":\"Katie C. Coate ,&nbsp;Chunhua Dai ,&nbsp;Ajay Singh ,&nbsp;Jade Stanley ,&nbsp;Brittney A. Covington ,&nbsp;Amber Bradley ,&nbsp;Favour Oladipupo ,&nbsp;Yulong Gong ,&nbsp;Scott Wisniewski ,&nbsp;Katelyn Sellick ,&nbsp;Erick Spears ,&nbsp;Greg Poffenberger ,&nbsp;Anna Marie R. Schornack ,&nbsp;Alexandria Bustabad ,&nbsp;Tyler Rodgers ,&nbsp;Nandita Dey ,&nbsp;Leonard D. Shultz ,&nbsp;Dale L. Greiner ,&nbsp;Hai Yan ,&nbsp;Alvin C. Powers ,&nbsp;E. Danielle Dean\",\"doi\":\"10.1016/j.molmet.2024.102050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context.</div></div><div><h3>Methods</h3><div>We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth.</div></div><div><h3>Results</h3><div>Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, <em>gcgr</em> deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice.</div></div><div><h3>Conclusions</h3><div>Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"90 \",\"pages\":\"Article 102050\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001819\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001819","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:胰高血糖素分泌失调和功能性β细胞数量不足是糖尿病的标志性特征。在糖尿病临床前模型中,胰高血糖素受体(GCGR)拮抗能改善高血糖症状并促进β细胞再生,但同时也会促进α和δ细胞增生。我们试图研究胰高血糖素作用的丧失影响胰岛非α细胞的机制,以及这些观察结果与人类胰岛的相关性:我们使用斑马鱼、啮齿动物和移植的人类胰岛,包括六种不同的胰高血糖素信号中断模型,研究它们对δ和β细胞增殖和质量的影响。我们还利用阳离子氨基酸转运体 SLC7A2 的全面缺乏和通过雷帕霉素抑制 mTORC1 的模型,来确定胰岛非α细胞的生长是否需要依赖氨基酸的营养传感:结果:抑制胰高血糖素信号传导可刺激小鼠和移植人胰岛以及小鼠胰岛中的δ细胞增殖。这对雷帕霉素敏感,并且需要 SLC7A2。同样,在斑马鱼体内,gcgr 缺乏通过 SLC7A2- 和 mTORC1 依赖性机制增强了β细胞增殖,并促进了啮齿动物β细胞的细胞周期参与,但不足以驱动小鼠β细胞质量的显著增加:我们的研究结果表明,在斑马鱼、啮齿动物和移植的人类胰岛中,胰高血糖素信号的中断会以一种需要 SLC7A2 和 mTORC1 激活的方式促进胰岛非α细胞的增殖。δ细胞质量的增加可用于未来依赖δ细胞重编程的β细胞再生疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interruption of glucagon signaling augments islet non-alpha cell proliferation in SLC7A2- and mTOR-dependent manners

Objective

Dysregulated glucagon secretion and inadequate functional beta cell mass are hallmark features of diabetes. While glucagon receptor (GCGR) antagonism ameliorates hyperglycemia and elicits beta cell regeneration in pre-clinical models of diabetes, it also promotes alpha and delta cell hyperplasia. We sought to investigate the mechanism by which loss of glucagon action impacts pancreatic islet non-alpha cells, and the relevance of these observations in a human islet context.

Methods

We used zebrafish, rodents, and transplanted human islets comprising six different models of interrupted glucagon signaling to examine their impact on delta and beta cell proliferation and mass. We also used models with global deficiency of the cationic amino acid transporter, SLC7A2, and mTORC1 inhibition via rapamycin, to determine whether amino acid-dependent nutrient sensing was required for islet non-alpha cell growth.

Results

Inhibition of glucagon signaling stimulated delta cell proliferation in mouse and transplanted human islets, and in mouse islets. This was rapamycin-sensitive and required SLC7A2. Likewise, gcgr deficiency augmented beta cell proliferation via SLC7A2- and mTORC1-dependent mechanisms in zebrafish and promoted cell cycle engagement in rodent beta cells but was insufficient to drive a significant increase in beta cell mass in mice.

Conclusions

Our findings demonstrate that interruption of glucagon signaling augments islet non-alpha cell proliferation in zebrafish, rodents, and transplanted human islets in a manner requiring SLC7A2 and mTORC1 activation. An increase in delta cell mass may be leveraged for future beta cell regeneration therapies relying upon delta cell reprogramming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
Senescent Cell Depletion Alleviates Obesity-related Metabolic and Cardiac Disorders. Incretin-responsive human pancreatic adipose tissue organoids: a functional model for fatty pancreas research. Essential role of germ cell glycerol-3-phosphate phosphatase for sperm health, oxidative stress control and male fertility in mice. Increased susceptibility to diet-induced obesity in female mice impairs ovarian steroidogenesis: The role of elevated leptin signalling on nodal activity inhibition in theca cells. Variable glucagon metabolic actions in diverse mouse models of obesity and type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1