海洋生物薄膜:全球海洋的蓝藻工厂。

IF 5 2区 生物学 Q1 MICROBIOLOGY mSystems Pub Date : 2024-11-19 Epub Date: 2024-10-15 DOI:10.1128/msystems.00317-24
Cheng Zhong, Shun Yamanouchi, Yingdong Li, Jiawei Chen, Tong Wei, Ruojun Wang, Kun Zhou, Aifang Cheng, Weiduo Hao, Hongbin Liu, Kurt O Konhauser, Wataru Iwasaki, Pei-Yuan Qian
{"title":"海洋生物薄膜:全球海洋的蓝藻工厂。","authors":"Cheng Zhong, Shun Yamanouchi, Yingdong Li, Jiawei Chen, Tong Wei, Ruojun Wang, Kun Zhou, Aifang Cheng, Weiduo Hao, Hongbin Liu, Kurt O Konhauser, Wataru Iwasaki, Pei-Yuan Qian","doi":"10.1128/msystems.00317-24","DOIUrl":null,"url":null,"abstract":"<p><p>Marine biofilms were newly revealed as a giant microbial diversity pool for global oceans. However, the cyanobacterial diversity in marine biofilms within the upper seawater column and its ecological and evolutionary implications remains undetermined. Here, we reconstructed a full picture of modern marine cyanobacteria habitats by re-analyzing 9.3 terabyte metagenomic data sets and 2,648 metagenome-assembled genomes (MAGs). The abundances of cyanobacteria lineages exclusively detected in marine biofilms were up to ninefold higher than those in seawater at similar sample size. Analyses revealed that cyanobacteria in marine biofilms are specialists with strong geographical and environmental constraints on their genome and functional adaption, which is in stark contrast to the generalistic features of seawater-derived cyanobacteria. Molecular dating suggests that the important diversifications in biofilm-forming cyanobacteria appear to coincide with the Great Oxidation Event (GOE), \"boring billion\" middle Proterozoic, and the Neoproterozoic Oxidation Event (NOE). These new insights suggest that marine biofilms are large and important cyanobacterial factories for the global oceans.</p><p><strong>Importance: </strong>Cyanobacteria, highly diverse microbial organisms, play a crucial role in Earth's oxygenation and biogeochemical cycling. However, their connection to these processes remains unclear, partly due to incomplete surveys of oceanic niches. Our study uncovered significant cyanobacterial diversity in marine biofilms, showing distinct niche differentiation compared to seawater counterparts. These patterns reflect three key stages of marine cyanobacterial diversification, coinciding with major geological events in the Earth's history.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0031724"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575276/pdf/","citationCount":"0","resultStr":"{\"title\":\"Marine biofilms: cyanobacteria factories for the global oceans.\",\"authors\":\"Cheng Zhong, Shun Yamanouchi, Yingdong Li, Jiawei Chen, Tong Wei, Ruojun Wang, Kun Zhou, Aifang Cheng, Weiduo Hao, Hongbin Liu, Kurt O Konhauser, Wataru Iwasaki, Pei-Yuan Qian\",\"doi\":\"10.1128/msystems.00317-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine biofilms were newly revealed as a giant microbial diversity pool for global oceans. However, the cyanobacterial diversity in marine biofilms within the upper seawater column and its ecological and evolutionary implications remains undetermined. Here, we reconstructed a full picture of modern marine cyanobacteria habitats by re-analyzing 9.3 terabyte metagenomic data sets and 2,648 metagenome-assembled genomes (MAGs). The abundances of cyanobacteria lineages exclusively detected in marine biofilms were up to ninefold higher than those in seawater at similar sample size. Analyses revealed that cyanobacteria in marine biofilms are specialists with strong geographical and environmental constraints on their genome and functional adaption, which is in stark contrast to the generalistic features of seawater-derived cyanobacteria. Molecular dating suggests that the important diversifications in biofilm-forming cyanobacteria appear to coincide with the Great Oxidation Event (GOE), \\\"boring billion\\\" middle Proterozoic, and the Neoproterozoic Oxidation Event (NOE). These new insights suggest that marine biofilms are large and important cyanobacterial factories for the global oceans.</p><p><strong>Importance: </strong>Cyanobacteria, highly diverse microbial organisms, play a crucial role in Earth's oxygenation and biogeochemical cycling. However, their connection to these processes remains unclear, partly due to incomplete surveys of oceanic niches. Our study uncovered significant cyanobacterial diversity in marine biofilms, showing distinct niche differentiation compared to seawater counterparts. These patterns reflect three key stages of marine cyanobacterial diversification, coinciding with major geological events in the Earth's history.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0031724\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575276/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00317-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00317-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新近发现的海洋生物薄膜是全球海洋中巨大的微生物多样性库。然而,海水上层生物膜中的蓝藻多样性及其对生态和进化的影响仍未确定。在此,我们通过重新分析 9.3 TB 的元基因组数据集和 2,648 个元基因组组装基因组(MAGs),重建了现代海洋蓝藻栖息地的全貌。在样本量相近的情况下,海洋生物薄膜中专门检测到的蓝藻菌系的丰度比海水中的高出九倍之多。分析表明,海洋生物膜中的蓝藻是专科蓝藻,其基因组和功能适应性受到地理和环境的强烈限制,这与海水蓝藻的普遍性特征形成了鲜明对比。分子年代测定表明,形成生物膜的蓝藻的重要分化似乎与大氧化事件(GOE)、"无聊的十亿 "中新生代和新新生代氧化事件(NOE)相吻合。这些新发现表明,海洋生物薄膜是全球海洋中重要的大型蓝藻工厂:蓝藻是高度多样化的微生物有机体,在地球的氧合和生物地球化学循环中发挥着至关重要的作用。然而,它们与这些过程之间的联系仍不清楚,部分原因是对海洋生态位的调查不全面。我们的研究发现了海洋生物膜中蓝藻的显著多样性,与海水中的蓝藻相比,蓝藻表现出明显的生态位分化。这些模式反映了海洋蓝藻多样化的三个关键阶段,与地球历史上的重大地质事件相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marine biofilms: cyanobacteria factories for the global oceans.

Marine biofilms were newly revealed as a giant microbial diversity pool for global oceans. However, the cyanobacterial diversity in marine biofilms within the upper seawater column and its ecological and evolutionary implications remains undetermined. Here, we reconstructed a full picture of modern marine cyanobacteria habitats by re-analyzing 9.3 terabyte metagenomic data sets and 2,648 metagenome-assembled genomes (MAGs). The abundances of cyanobacteria lineages exclusively detected in marine biofilms were up to ninefold higher than those in seawater at similar sample size. Analyses revealed that cyanobacteria in marine biofilms are specialists with strong geographical and environmental constraints on their genome and functional adaption, which is in stark contrast to the generalistic features of seawater-derived cyanobacteria. Molecular dating suggests that the important diversifications in biofilm-forming cyanobacteria appear to coincide with the Great Oxidation Event (GOE), "boring billion" middle Proterozoic, and the Neoproterozoic Oxidation Event (NOE). These new insights suggest that marine biofilms are large and important cyanobacterial factories for the global oceans.

Importance: Cyanobacteria, highly diverse microbial organisms, play a crucial role in Earth's oxygenation and biogeochemical cycling. However, their connection to these processes remains unclear, partly due to incomplete surveys of oceanic niches. Our study uncovered significant cyanobacterial diversity in marine biofilms, showing distinct niche differentiation compared to seawater counterparts. These patterns reflect three key stages of marine cyanobacterial diversification, coinciding with major geological events in the Earth's history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
期刊最新文献
Association of body index with fecal microbiome in children cohorts with ethnic-geographic factor interaction: accurately using a Bayesian zero-inflated negative binomial regression model. Cigarette smoke-induced disordered microbiota aggravates the severity of influenza A virus infection. Deep learning enabled integration of tumor microenvironment microbial profiles and host gene expressions for interpretable survival subtyping in diverse types of cancers. Advancing microbiome research in Māori populations: insights from recent literature exploring the gut microbiomes of underrepresented and Indigenous peoples. Pan-genome-scale metabolic modeling of Bacillus subtilis reveals functionally distinct groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1