Aarti Belgamwar , Rarchita Sharma , Yogesh Mali , Yogeeta O. Agrawal , Kartik T. Nakhate
{"title":"缺血性中风的纳米革命:对纳米医学在诊断和治疗中的现有选择和潜力的批判性分析。","authors":"Aarti Belgamwar , Rarchita Sharma , Yogesh Mali , Yogeeta O. Agrawal , Kartik T. Nakhate","doi":"10.1016/j.neuroscience.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.<!--> <!-->This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.<!--> <!-->We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"562 ","pages":"Pages 90-105"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics\",\"authors\":\"Aarti Belgamwar , Rarchita Sharma , Yogesh Mali , Yogeeta O. Agrawal , Kartik T. Nakhate\",\"doi\":\"10.1016/j.neuroscience.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.<!--> <!-->This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.<!--> <!-->We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"562 \",\"pages\":\"Pages 90-105\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224005335\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224005335","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability. This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes. We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.