Georgios Michalettos, Fredrik Clausen, Elham Rostami, Niklas Marklund
{"title":"损伤后使用 7,8- 二羟基黄酮可减轻老年小鼠局灶性脑外伤后的白质病变。","authors":"Georgios Michalettos, Fredrik Clausen, Elham Rostami, Niklas Marklund","doi":"10.1016/j.neurot.2024.e00472","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00472"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury.\",\"authors\":\"Georgios Michalettos, Fredrik Clausen, Elham Rostami, Niklas Marklund\",\"doi\":\"10.1016/j.neurot.2024.e00472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.</p>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\" \",\"pages\":\"e00472\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neurot.2024.e00472\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2024.e00472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury.
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.