Yang Zhou, Zijun Meng, Yuqing Han, Xiaofang Yang, Jinxia Kuai, Haijun Bao
{"title":"apelin-13 在创伤后应激障碍小鼠模型中的作用。","authors":"Yang Zhou, Zijun Meng, Yuqing Han, Xiaofang Yang, Jinxia Kuai, Haijun Bao","doi":"10.1097/WNR.0000000000002104","DOIUrl":null,"url":null,"abstract":"<p><p>The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of apelin-13 in a mouse model of post-traumatic stress disorder.\",\"authors\":\"Yang Zhou, Zijun Meng, Yuqing Han, Xiaofang Yang, Jinxia Kuai, Haijun Bao\",\"doi\":\"10.1097/WNR.0000000000002104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002104\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The effects of apelin-13 in a mouse model of post-traumatic stress disorder.
The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.