在二硅酸锂厚度和透光度不同的情况下,无线 LED 固化装置的电池电量对树脂水泥的影响。

IF 1.4 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Operative dentistry Pub Date : 2024-11-01 DOI:10.2341/24-018-L
M R de Azevedo, R R Pacheco, L B Qualhato, K K Dolenkei, C J Soares, L H Raposo
{"title":"在二硅酸锂厚度和透光度不同的情况下,无线 LED 固化装置的电池电量对树脂水泥的影响。","authors":"M R de Azevedo, R R Pacheco, L B Qualhato, K K Dolenkei, C J Soares, L H Raposo","doi":"10.2341/24-018-L","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to evaluate the impact of battery levels on the emission of a multi-peak cordless LED light-curing unit (LCU) and the effect on the degree of conversion (DC) and Knoop hardness (KH) of a light-cure resin luting agent activated through varying lithium disilicate (LiS2) ceramic thicknesses and translucencies.</p><p><strong>Methods: </strong>High and low translucency LiS2 discs (IPS e.max Press HT and LT, respectively; shade A1) with thickness of 0.5, 1.0, 1.5, and 2.0 mm were fabricated. Resin luting agent specimens (Variolink Esthetic LC) were prepared and cured using a Bluephase G2 LCU at different battery levels (100%, 50%, and 10%) through the LiS2 ceramics. The transmitted irradiance was evaluated using USB4000 MARC, while FTIR and a microhardness tester assessed DC and KH, respectively. After ensuring homoscedasticity, the data wee analyzed using analysis of variance and Tukey HSD test (α=0.05).</p><p><strong>Results: </strong>The study found strong positive correlations between battery levels and irradiance, particularly with no ceramic interposition and through HT ceramics (R2=0.9471), although this correlation diminished with thicker HT (R2=0.7907) and LT ceramics (R2<0.2980). Both battery levels and ceramic thickness significantly influenced transmitted irradiance (p<0.0001), resulting in lower values with decreased battery levels and increased ceramic thicknesses (p<0.0001). LT ceramics showed lower transmittance than HT. DC was significantly affected by both battery levels and ceramic thicknesses, with generally lower DC values except for LT ceramics at a 10% battery level (p<0.0001). No significant differences in DC were observed between HT and LT translucencies (p=0.548). KH was higher in HT than LT ceramics at 100% and 50% battery levels, with thicker ceramics showing lower KH values at 10% battery level (p<0.0001). Conclusion: Reduced battery levels in cordless LED curing units significantly affect the irradiance, degree of conversion, and hardness of light-curable resin luting agents. Maintaining battery levels above 50% is recommended for optimal performance. Thicker and more opaque ceramics significantly impacted incident irradiance. However, preserving radiant energy could potentially mitigate these limitations.</p>","PeriodicalId":19502,"journal":{"name":"Operative dentistry","volume":" ","pages":"704-713"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Battery Levels of a Cordless LED Curing Unit on Resin Cement under Varied Lithium Disilicate Thicknesses and Translucencies.\",\"authors\":\"M R de Azevedo, R R Pacheco, L B Qualhato, K K Dolenkei, C J Soares, L H Raposo\",\"doi\":\"10.2341/24-018-L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to evaluate the impact of battery levels on the emission of a multi-peak cordless LED light-curing unit (LCU) and the effect on the degree of conversion (DC) and Knoop hardness (KH) of a light-cure resin luting agent activated through varying lithium disilicate (LiS2) ceramic thicknesses and translucencies.</p><p><strong>Methods: </strong>High and low translucency LiS2 discs (IPS e.max Press HT and LT, respectively; shade A1) with thickness of 0.5, 1.0, 1.5, and 2.0 mm were fabricated. Resin luting agent specimens (Variolink Esthetic LC) were prepared and cured using a Bluephase G2 LCU at different battery levels (100%, 50%, and 10%) through the LiS2 ceramics. The transmitted irradiance was evaluated using USB4000 MARC, while FTIR and a microhardness tester assessed DC and KH, respectively. After ensuring homoscedasticity, the data wee analyzed using analysis of variance and Tukey HSD test (α=0.05).</p><p><strong>Results: </strong>The study found strong positive correlations between battery levels and irradiance, particularly with no ceramic interposition and through HT ceramics (R2=0.9471), although this correlation diminished with thicker HT (R2=0.7907) and LT ceramics (R2<0.2980). Both battery levels and ceramic thickness significantly influenced transmitted irradiance (p<0.0001), resulting in lower values with decreased battery levels and increased ceramic thicknesses (p<0.0001). LT ceramics showed lower transmittance than HT. DC was significantly affected by both battery levels and ceramic thicknesses, with generally lower DC values except for LT ceramics at a 10% battery level (p<0.0001). No significant differences in DC were observed between HT and LT translucencies (p=0.548). KH was higher in HT than LT ceramics at 100% and 50% battery levels, with thicker ceramics showing lower KH values at 10% battery level (p<0.0001). Conclusion: Reduced battery levels in cordless LED curing units significantly affect the irradiance, degree of conversion, and hardness of light-curable resin luting agents. Maintaining battery levels above 50% is recommended for optimal performance. Thicker and more opaque ceramics significantly impacted incident irradiance. However, preserving radiant energy could potentially mitigate these limitations.</p>\",\"PeriodicalId\":19502,\"journal\":{\"name\":\"Operative dentistry\",\"volume\":\" \",\"pages\":\"704-713\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operative dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2341/24-018-L\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operative dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2341/24-018-L","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在评估电池电量对多峰无绳 LED 光固化装置(LCU)发射的影响,以及对通过不同二硅酸锂(LiS2)陶瓷厚度和半透明度激活的光固化树脂敷料的转换度(DC)和努氏硬度(KH)的影响。方法:制作厚度分别为 0.5、1.0、1.5 和 2.0 毫米的高透光度和低透光度 LiS2 陶瓷盘(分别为 IPS e.max Press HT 和 LT;色调 A1)。使用 Bluephase G2 LCU 制备树脂衬垫试样(Variolink Esthetic LC),并通过 LiS2 陶瓷在不同的电池水平(100%、50% 和 10%)下固化。使用 USB4000 MARC 评估透射辐照度,傅立叶变换红外光谱仪和显微硬度计分别评估 DC 和 KH。在确保同方差分析后,我们使用方差分析和 Tukey HSD 检验(α=0.05)对数据进行了分析:研究发现,电池电量和辐照度之间有很强的正相关性,尤其是在没有陶瓷夹层和通过 HT 陶瓷的情况下(R2=0.9471),但这种相关性在使用较厚的 HT 陶瓷(R2=0.7907)和 LT 陶瓷(R2=0.7907)时有所减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Battery Levels of a Cordless LED Curing Unit on Resin Cement under Varied Lithium Disilicate Thicknesses and Translucencies.

Objectives: This study aimed to evaluate the impact of battery levels on the emission of a multi-peak cordless LED light-curing unit (LCU) and the effect on the degree of conversion (DC) and Knoop hardness (KH) of a light-cure resin luting agent activated through varying lithium disilicate (LiS2) ceramic thicknesses and translucencies.

Methods: High and low translucency LiS2 discs (IPS e.max Press HT and LT, respectively; shade A1) with thickness of 0.5, 1.0, 1.5, and 2.0 mm were fabricated. Resin luting agent specimens (Variolink Esthetic LC) were prepared and cured using a Bluephase G2 LCU at different battery levels (100%, 50%, and 10%) through the LiS2 ceramics. The transmitted irradiance was evaluated using USB4000 MARC, while FTIR and a microhardness tester assessed DC and KH, respectively. After ensuring homoscedasticity, the data wee analyzed using analysis of variance and Tukey HSD test (α=0.05).

Results: The study found strong positive correlations between battery levels and irradiance, particularly with no ceramic interposition and through HT ceramics (R2=0.9471), although this correlation diminished with thicker HT (R2=0.7907) and LT ceramics (R2<0.2980). Both battery levels and ceramic thickness significantly influenced transmitted irradiance (p<0.0001), resulting in lower values with decreased battery levels and increased ceramic thicknesses (p<0.0001). LT ceramics showed lower transmittance than HT. DC was significantly affected by both battery levels and ceramic thicknesses, with generally lower DC values except for LT ceramics at a 10% battery level (p<0.0001). No significant differences in DC were observed between HT and LT translucencies (p=0.548). KH was higher in HT than LT ceramics at 100% and 50% battery levels, with thicker ceramics showing lower KH values at 10% battery level (p<0.0001). Conclusion: Reduced battery levels in cordless LED curing units significantly affect the irradiance, degree of conversion, and hardness of light-curable resin luting agents. Maintaining battery levels above 50% is recommended for optimal performance. Thicker and more opaque ceramics significantly impacted incident irradiance. However, preserving radiant energy could potentially mitigate these limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operative dentistry
Operative dentistry 医学-牙科与口腔外科
CiteScore
4.00
自引率
9.10%
发文量
124
审稿时长
6-12 weeks
期刊介绍: Operative Dentistry is a refereed, international journal published bi-monthly and distributed to subscribers in over 50 countries. In 2012, we printed 84 articles (672 pages). Papers were submitted by authors from 45 countries, in the categories of Clinical Research, Laboratory Research, Clinical Techniques/Case Presentations and Invited Papers, as well as Editorials and Abstracts. One of the strong points of our journal is that our current publication time for accepted manuscripts is 4 to 6 months from the date of submission. Clinical Techniques/Case Presentations have a very quick turnaround time, which allows for very rapid publication of clinical based concepts. We also provide color for those papers that would benefit from its use. The journal does not accept any advertising but you will find postings for faculty positions. Additionally, the journal also does not rent, sell or otherwise allow its subscriber list to be used by any other entity
期刊最新文献
3D Printed Dual Reduction Guide: A Feasible Alternative for Conservative Gingivectomy and Minimally Invasive Preparation for Ceramic Veneers. A Novel Isolation Technique Using Polytetrafluoroethylene Tape and Split Dam Isolation for Cementation in Bridge Restorations. Bacterial Adhesion and In Situ Biodegradation of Preheated Resin Composite Used as a Luting Agent for Indirect Restorations. Biomechanical and Physical Characteristics of Dental Dam Sheets Used for Absolute Isolation. Bonding and Cleaning Effects of Irrigation Protocols Using Calcium Hypochlorite on the Post-space Radicular Dentin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1