生态变化增加了巴西亚马逊地区的疟疾风险。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-10-29 Epub Date: 2024-10-21 DOI:10.1073/pnas.2409583121
Nicholas J Arisco, Cassio Peterka, Cesar Diniz, Burton H Singer, Marcia C Castro
{"title":"生态变化增加了巴西亚马逊地区的疟疾风险。","authors":"Nicholas J Arisco, Cassio Peterka, Cesar Diniz, Burton H Singer, Marcia C Castro","doi":"10.1073/pnas.2409583121","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological change in the Brazilian Amazon is closely linked to human mobility and health. Mining, agriculture, logging, and other activities alter highly diverse ecological and demographic contexts and subsequent exposure to diseases such as malaria. Studies that have attempted to quantify the impact of deforestation on malaria in the Brazilian Amazon have produced conflicting results. However, they varied in methodology and data sources. Most importantly, all studies used annual data, neglecting the subannual seasonal dynamics of malaria. Here, we fill the knowledge gap on the subannual relationship between ecological change in the Brazilian Amazon and malaria transmission. Using the highest spatiotemporal resolution available, we estimated the effect of deforestation on malaria cases between 2003 and 2022 using a stratified Bayesian spatiotemporal hierarchical zero-inflated Poisson model fitted with the Integrated Nested Laplace Approximation. The model was also stratified by state. We found that a 1% increase in 1-mo lagged deforestation increased malaria cases in a given month and municipality by 6.3% [95% credible interval (Crl): 6.2, 6.5%]. Based on an interaction term included in the model, the effect of deforestation on malaria was even larger in areas with higher forest cover. We found that the coefficients for deforestation and mobility were highly variable when stratified by state. Our results provide detailed evidence that, on average, deforestation increases malaria transmission, but that the relationship is not spatiotemporally uniform. These results have implications for stratifying malaria control interventions based on ecological dynamics to help Brazil achieve its goal of malaria elimination by 2035.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecological change increases malaria risk in the Brazilian Amazon.\",\"authors\":\"Nicholas J Arisco, Cassio Peterka, Cesar Diniz, Burton H Singer, Marcia C Castro\",\"doi\":\"10.1073/pnas.2409583121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ecological change in the Brazilian Amazon is closely linked to human mobility and health. Mining, agriculture, logging, and other activities alter highly diverse ecological and demographic contexts and subsequent exposure to diseases such as malaria. Studies that have attempted to quantify the impact of deforestation on malaria in the Brazilian Amazon have produced conflicting results. However, they varied in methodology and data sources. Most importantly, all studies used annual data, neglecting the subannual seasonal dynamics of malaria. Here, we fill the knowledge gap on the subannual relationship between ecological change in the Brazilian Amazon and malaria transmission. Using the highest spatiotemporal resolution available, we estimated the effect of deforestation on malaria cases between 2003 and 2022 using a stratified Bayesian spatiotemporal hierarchical zero-inflated Poisson model fitted with the Integrated Nested Laplace Approximation. The model was also stratified by state. We found that a 1% increase in 1-mo lagged deforestation increased malaria cases in a given month and municipality by 6.3% [95% credible interval (Crl): 6.2, 6.5%]. Based on an interaction term included in the model, the effect of deforestation on malaria was even larger in areas with higher forest cover. We found that the coefficients for deforestation and mobility were highly variable when stratified by state. Our results provide detailed evidence that, on average, deforestation increases malaria transmission, but that the relationship is not spatiotemporally uniform. These results have implications for stratifying malaria control interventions based on ecological dynamics to help Brazil achieve its goal of malaria elimination by 2035.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409583121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409583121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

巴西亚马逊地区的生态变化与人类的流动性和健康密切相关。采矿、农业、伐木和其他活动改变了高度多样化的生态和人口环境,进而导致疟疾等疾病的发生。试图量化森林砍伐对巴西亚马逊地区疟疾影响的研究得出了相互矛盾的结果。不过,这些研究的方法和数据来源各不相同。最重要的是,所有研究都使用了年度数据,忽略了疟疾的亚年度季节性动态。在此,我们填补了有关巴西亚马逊生态变化与疟疾传播之间亚年度关系的知识空白。利用现有的最高时空分辨率,我们采用分层贝叶斯时空分层零膨胀泊松模型,并用集成嵌套拉普拉斯近似法进行拟合,估计了 2003 年至 2022 年期间森林砍伐对疟疾病例的影响。该模型还按州进行了分层。我们发现,滞后 1 个月的森林砍伐每增加 1%,特定月份和城市的疟疾病例就会增加 6.3% [95% 可信区间 (Crl):6.2, 6.5%]。根据模型中的交互项,在森林覆盖率较高的地区,森林砍伐对疟疾的影响更大。我们发现,在按州分层时,森林砍伐和流动性的系数变化很大。我们的研究结果提供了详细的证据,表明平均而言,砍伐森林会增加疟疾的传播,但这种关系在时空上并不一致。这些结果有助于根据生态动态对疟疾控制干预措施进行分层,以帮助巴西实现到 2035 年消灭疟疾的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecological change increases malaria risk in the Brazilian Amazon.

Ecological change in the Brazilian Amazon is closely linked to human mobility and health. Mining, agriculture, logging, and other activities alter highly diverse ecological and demographic contexts and subsequent exposure to diseases such as malaria. Studies that have attempted to quantify the impact of deforestation on malaria in the Brazilian Amazon have produced conflicting results. However, they varied in methodology and data sources. Most importantly, all studies used annual data, neglecting the subannual seasonal dynamics of malaria. Here, we fill the knowledge gap on the subannual relationship between ecological change in the Brazilian Amazon and malaria transmission. Using the highest spatiotemporal resolution available, we estimated the effect of deforestation on malaria cases between 2003 and 2022 using a stratified Bayesian spatiotemporal hierarchical zero-inflated Poisson model fitted with the Integrated Nested Laplace Approximation. The model was also stratified by state. We found that a 1% increase in 1-mo lagged deforestation increased malaria cases in a given month and municipality by 6.3% [95% credible interval (Crl): 6.2, 6.5%]. Based on an interaction term included in the model, the effect of deforestation on malaria was even larger in areas with higher forest cover. We found that the coefficients for deforestation and mobility were highly variable when stratified by state. Our results provide detailed evidence that, on average, deforestation increases malaria transmission, but that the relationship is not spatiotemporally uniform. These results have implications for stratifying malaria control interventions based on ecological dynamics to help Brazil achieve its goal of malaria elimination by 2035.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Higher oxygen content and transport characterize high-altitude ethnic Tibetan women with the highest lifetime reproductive success. Persistently active El Niño-Southern Oscillation since the Mesozoic. Heat waves may trigger unexpected surge in aerosol and ozone precursor emissions from sedges in urban landscapes. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. AMBRA1 controls the translation of immune-specific genes in T lymphocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1