多中心膀胱癌磁共振成像数据集和联合学习在临床应用中的基线评估。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-18 DOI:10.1038/s41597-024-03971-0
Kangyang Cao, Yujian Zou, Chang Zhang, Weijing Zhang, Jie Zhang, Guojie Wang, Chu Zhang, Jiegeng Lyu, Yue Sun, Hongyuan Zhang, Bin Huang, Lei Deng, Shuiqing Yang, Jianpeng Li, Bingsheng Huang
{"title":"多中心膀胱癌磁共振成像数据集和联合学习在临床应用中的基线评估。","authors":"Kangyang Cao, Yujian Zou, Chang Zhang, Weijing Zhang, Jie Zhang, Guojie Wang, Chu Zhang, Jiegeng Lyu, Yue Sun, Hongyuan Zhang, Bin Huang, Lei Deng, Shuiqing Yang, Jianpeng Li, Bingsheng Huang","doi":"10.1038/s41597-024-03971-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer (BCa), as the most common malignant tumor of the urinary system, has received significant attention in research on the clinical application of artificial intelligence algorithms. Nevertheless, it has been observed that certain investigations use data from various medical facilities to train models for BCa, which may pose a privacy risk. Given this concern, protecting patient privacy during machine learning algorithm training is a crucial aspect that requires substantial attention. One emerging machine learning paradigm that addresses this concern is federated learning (FL). FL enables multiple entities to collaboratively build machine learning models while preserving data privacy and security. In this study, we present a multicenter BCa magnetic resonance imaging (MRI) dataset. The dataset comprises 275 three-dimensional bladder T2-weighted MRI scans collected from four medical centers, and each scan includes diagnostic pathological labels for muscle invasion and pixel-level annotations of tumor contours. Four FL methods are used to assess the baseline of the dataset for both the task of diagnosing muscle-invasive bladder cancer and automatic bladder tumor lesion segmentation.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1147"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489429/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multicenter bladder cancer MRI dataset and baseline evaluation of federated learning in clinical application.\",\"authors\":\"Kangyang Cao, Yujian Zou, Chang Zhang, Weijing Zhang, Jie Zhang, Guojie Wang, Chu Zhang, Jiegeng Lyu, Yue Sun, Hongyuan Zhang, Bin Huang, Lei Deng, Shuiqing Yang, Jianpeng Li, Bingsheng Huang\",\"doi\":\"10.1038/s41597-024-03971-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bladder cancer (BCa), as the most common malignant tumor of the urinary system, has received significant attention in research on the clinical application of artificial intelligence algorithms. Nevertheless, it has been observed that certain investigations use data from various medical facilities to train models for BCa, which may pose a privacy risk. Given this concern, protecting patient privacy during machine learning algorithm training is a crucial aspect that requires substantial attention. One emerging machine learning paradigm that addresses this concern is federated learning (FL). FL enables multiple entities to collaboratively build machine learning models while preserving data privacy and security. In this study, we present a multicenter BCa magnetic resonance imaging (MRI) dataset. The dataset comprises 275 three-dimensional bladder T2-weighted MRI scans collected from four medical centers, and each scan includes diagnostic pathological labels for muscle invasion and pixel-level annotations of tumor contours. Four FL methods are used to assess the baseline of the dataset for both the task of diagnosing muscle-invasive bladder cancer and automatic bladder tumor lesion segmentation.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1147\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-03971-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03971-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

膀胱癌(BCa)是泌尿系统最常见的恶性肿瘤,在人工智能算法的临床应用研究中备受关注。然而,据观察,某些研究使用来自不同医疗机构的数据来训练 BCa 模型,这可能会带来隐私风险。有鉴于此,在机器学习算法训练过程中保护患者隐私是一个至关重要的方面,需要引起高度重视。解决这一问题的一种新兴机器学习范式是联合学习(FL)。联合学习使多个实体能够合作建立机器学习模型,同时保护数据隐私和安全。在本研究中,我们展示了一个多中心 BCa 磁共振成像(MRI)数据集。该数据集包括从四个医疗中心收集的 275 个三维膀胱 T2 加权磁共振成像扫描,每个扫描包括肌肉侵犯的诊断病理标签和肿瘤轮廓的像素级注释。在诊断肌肉浸润性膀胱癌和自动膀胱肿瘤病灶分割任务中,使用了四种 FL 方法来评估数据集的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multicenter bladder cancer MRI dataset and baseline evaluation of federated learning in clinical application.

Bladder cancer (BCa), as the most common malignant tumor of the urinary system, has received significant attention in research on the clinical application of artificial intelligence algorithms. Nevertheless, it has been observed that certain investigations use data from various medical facilities to train models for BCa, which may pose a privacy risk. Given this concern, protecting patient privacy during machine learning algorithm training is a crucial aspect that requires substantial attention. One emerging machine learning paradigm that addresses this concern is federated learning (FL). FL enables multiple entities to collaboratively build machine learning models while preserving data privacy and security. In this study, we present a multicenter BCa magnetic resonance imaging (MRI) dataset. The dataset comprises 275 three-dimensional bladder T2-weighted MRI scans collected from four medical centers, and each scan includes diagnostic pathological labels for muscle invasion and pixel-level annotations of tumor contours. Four FL methods are used to assess the baseline of the dataset for both the task of diagnosing muscle-invasive bladder cancer and automatic bladder tumor lesion segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the heteronomous hyperparasitoid wasp Encarsia sophia. A geospatial dataset of lichen key attributes in the Earth's three poles. An fMRI dataset in response to large-scale short natural dynamic facial expression videos. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. An annual land cover dataset for the Baltic Sea Region with crop types and peat bogs at 30 m from 2000 to 2022.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1