Andre Geraldo de Lima Moraes, Sajad Khoshnood Motlagh
{"title":"用于适应性和脆弱性评估的气候数据以及空间相互作用降尺度方法。","authors":"Andre Geraldo de Lima Moraes, Sajad Khoshnood Motlagh","doi":"10.1038/s41597-024-03995-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the spatial interactions downscaling (SPID) method and introduces the climate data for adaptation and vulnerability assessments (ClimAVA) dataset. SPID employs random forest models to capture the relationship between spatial patterns at global circulation model (GCM) resolution and fine-resolution pixel values. In summary, a random forest model is trained for each fine spatial resolution pixel of the reference data as the predictand, and nine pixels from the spatially resampled (coarser) version of the reference data at the GCM's resolutions as predictors. Models are then utilized to downscale the bias-corrected GCM data. The ClimAVA-SW dataset offers a high-resolution (4 km), bias-corrected, downscaled future climate projection derived from seventeen CMIP6 GCMs. It includes three variables (daily precipitation, minimum and maximum temperature) for three shared socioeconomic pathways (SSP245, SSP370, SSP585) across the U.S. Southwest region. The ClimAVA dataset sets itself apart with the SPID method's capacity to provide remarkable climate realism, high physical plausibility of change, and excellent representation of extreme events while maintaining user-friendliness and requiring relatively low computational resources.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1157"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490614/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Climate Data for Adaptation and Vulnerability Assessments and the Spatial Interactions Downscaling Method.\",\"authors\":\"Andre Geraldo de Lima Moraes, Sajad Khoshnood Motlagh\",\"doi\":\"10.1038/s41597-024-03995-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents the spatial interactions downscaling (SPID) method and introduces the climate data for adaptation and vulnerability assessments (ClimAVA) dataset. SPID employs random forest models to capture the relationship between spatial patterns at global circulation model (GCM) resolution and fine-resolution pixel values. In summary, a random forest model is trained for each fine spatial resolution pixel of the reference data as the predictand, and nine pixels from the spatially resampled (coarser) version of the reference data at the GCM's resolutions as predictors. Models are then utilized to downscale the bias-corrected GCM data. The ClimAVA-SW dataset offers a high-resolution (4 km), bias-corrected, downscaled future climate projection derived from seventeen CMIP6 GCMs. It includes three variables (daily precipitation, minimum and maximum temperature) for three shared socioeconomic pathways (SSP245, SSP370, SSP585) across the U.S. Southwest region. The ClimAVA dataset sets itself apart with the SPID method's capacity to provide remarkable climate realism, high physical plausibility of change, and excellent representation of extreme events while maintaining user-friendliness and requiring relatively low computational resources.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1157\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490614/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-03995-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03995-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The Climate Data for Adaptation and Vulnerability Assessments and the Spatial Interactions Downscaling Method.
This study presents the spatial interactions downscaling (SPID) method and introduces the climate data for adaptation and vulnerability assessments (ClimAVA) dataset. SPID employs random forest models to capture the relationship between spatial patterns at global circulation model (GCM) resolution and fine-resolution pixel values. In summary, a random forest model is trained for each fine spatial resolution pixel of the reference data as the predictand, and nine pixels from the spatially resampled (coarser) version of the reference data at the GCM's resolutions as predictors. Models are then utilized to downscale the bias-corrected GCM data. The ClimAVA-SW dataset offers a high-resolution (4 km), bias-corrected, downscaled future climate projection derived from seventeen CMIP6 GCMs. It includes three variables (daily precipitation, minimum and maximum temperature) for three shared socioeconomic pathways (SSP245, SSP370, SSP585) across the U.S. Southwest region. The ClimAVA dataset sets itself apart with the SPID method's capacity to provide remarkable climate realism, high physical plausibility of change, and excellent representation of extreme events while maintaining user-friendliness and requiring relatively low computational resources.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.