为预设亚组选择特定亚组最佳生物剂量的 I/II 期设计。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-12-10 Epub Date: 2024-10-18 DOI:10.1002/sim.10256
Sydney Porter, Thomas A Murray, Anne Eaton
{"title":"为预设亚组选择特定亚组最佳生物剂量的 I/II 期设计。","authors":"Sydney Porter, Thomas A Murray, Anne Eaton","doi":"10.1002/sim.10256","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a phase I/II trial design to support dose-finding when the optimal biological dose (OBD) may differ in two prespecified patient subgroups. The proposed design uses a utility function to quantify efficacy-toxicity trade-offs, and a Bayesian model with spike and slab prior distributions for the subgroup effect on toxicity and efficacy to guide dosing and to facilitate identifying either subgroup-specific OBDs or a common OBD depending on the resulting trial data. In a simulation study, we find the proposed design performs nearly as well as a design that ignores subgroups when the dose-toxicity and dose-efficacy relationships are the same in both subgroups, and nearly as well as a design with independent dose-finding within each subgroup when these relationships differ across subgroups. In other words, the proposed adaptive design performs similarly to the design that would be chosen if investigators possessed foreknowledge about whether the dose-toxicity and/or dose-efficacy relationship differs across two prespecified subgroups. Thus, the proposed design may be effective for OBD selection when uncertainty exists about whether the OBD differs in two prespecified subgroups.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5401-5411"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase I/II Design for Selecting Subgroup-Specific Optimal Biological Doses for Prespecified Subgroups.\",\"authors\":\"Sydney Porter, Thomas A Murray, Anne Eaton\",\"doi\":\"10.1002/sim.10256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a phase I/II trial design to support dose-finding when the optimal biological dose (OBD) may differ in two prespecified patient subgroups. The proposed design uses a utility function to quantify efficacy-toxicity trade-offs, and a Bayesian model with spike and slab prior distributions for the subgroup effect on toxicity and efficacy to guide dosing and to facilitate identifying either subgroup-specific OBDs or a common OBD depending on the resulting trial data. In a simulation study, we find the proposed design performs nearly as well as a design that ignores subgroups when the dose-toxicity and dose-efficacy relationships are the same in both subgroups, and nearly as well as a design with independent dose-finding within each subgroup when these relationships differ across subgroups. In other words, the proposed adaptive design performs similarly to the design that would be chosen if investigators possessed foreknowledge about whether the dose-toxicity and/or dose-efficacy relationship differs across two prespecified subgroups. Thus, the proposed design may be effective for OBD selection when uncertainty exists about whether the OBD differs in two prespecified subgroups.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"5401-5411\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10256\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种 I/II 期试验设计,当两个预先指定的患者亚组的最佳生物剂量(OBD)可能不同时,该设计可支持剂量的确定。建议的设计使用效用函数来量化疗效-毒性权衡,并使用贝叶斯模型对亚组对毒性和疗效的影响进行尖峰和板块先验分布,以指导给药,并根据试验数据确定亚组特定的最佳生物剂量或共同的最佳生物剂量。在一项模拟研究中,我们发现当两个亚组的剂量-毒性和剂量-疗效关系相同时,所提出的设计方案与忽略亚组的设计方案效果几乎一样好;而当两个亚组的剂量-毒性和剂量-疗效关系不同时,所提出的设计方案与在每个亚组内独立寻找剂量的设计方案效果几乎一样好。换句话说,如果研究者预先知道两个预先指定的亚组之间的剂量-毒性和/或剂量-疗效关系是否存在差异,那么所建议的适应性设计的表现与所选择的设计类似。因此,当不确定在两个预先指定的亚组中 OBD 是否存在差异时,所建议的设计可能对 OBD 的选择有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase I/II Design for Selecting Subgroup-Specific Optimal Biological Doses for Prespecified Subgroups.

We propose a phase I/II trial design to support dose-finding when the optimal biological dose (OBD) may differ in two prespecified patient subgroups. The proposed design uses a utility function to quantify efficacy-toxicity trade-offs, and a Bayesian model with spike and slab prior distributions for the subgroup effect on toxicity and efficacy to guide dosing and to facilitate identifying either subgroup-specific OBDs or a common OBD depending on the resulting trial data. In a simulation study, we find the proposed design performs nearly as well as a design that ignores subgroups when the dose-toxicity and dose-efficacy relationships are the same in both subgroups, and nearly as well as a design with independent dose-finding within each subgroup when these relationships differ across subgroups. In other words, the proposed adaptive design performs similarly to the design that would be chosen if investigators possessed foreknowledge about whether the dose-toxicity and/or dose-efficacy relationship differs across two prespecified subgroups. Thus, the proposed design may be effective for OBD selection when uncertainty exists about whether the OBD differs in two prespecified subgroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk. Does Remdesivir Lower COVID-19 Mortality? A Subgroup Analysis of Hospitalized Adults Receiving Supplemental Oxygen. Modeling Chronic Disease Mortality by Methods From Accelerated Life Testing. A Nonparametric Global Win Probability Approach to the Analysis and Sizing of Randomized Controlled Trials With Multiple Endpoints of Different Scales and Missing Data: Beyond O'Brien-Wei-Lachin. Causal Inference for Continuous Multiple Time Point Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1