Nicole Schubert, James W Southwell, Melissa Vázquez-Hernández, Svenja Wortmann, Sylvia Schloeglmann, Anne-Kathrin Duhme-Klair, Patrick Nuernberger, Julia E Bandow, Nils Metzler-Nolte
{"title":"用于研究生物正交钌催化剂在革兰氏阳性细菌体内的内化和作用的荧光探针。","authors":"Nicole Schubert, James W Southwell, Melissa Vázquez-Hernández, Svenja Wortmann, Sylvia Schloeglmann, Anne-Kathrin Duhme-Klair, Patrick Nuernberger, Julia E Bandow, Nils Metzler-Nolte","doi":"10.1039/d4cb00187g","DOIUrl":null,"url":null,"abstract":"<p><p>Bioorthogonal reactions are extremely useful for the chemical modification of biomolecules, and are already well studied in mammalian cells. In contrast, very little attention has been given to the feasibility of such reactions in bacteria. Herein we report modified coumarin dyes for monitoring the internalisation and activity of bioorthogonal catalysts in the Gram-positive bacterial species <i>Bacillus subtilis</i>. Two fluorophores based on 7-aminocoumarin were synthesised and characterised to establish their luminescence properties. The introduction of an allyl carbamate (R<sub>2</sub>N-COOR') group onto the nitrogen atom of two 7-aminocoumarin derivatives with different solubility led to decreased fluorescence emission intensities and remarkable blue-shifts of the emission maxima. Importantly, this allyl carbamate group could be uncaged by the bioorthogonal, organometallic ruthenium catalyst investigated in this work, to yield the fluorescent product under biologically-relevant conditions. The internalisation of this catalyst was confirmed and quantified by ICP-OES analysis. Investigation of the bacterial cytoplasm and extracellular fractions separately, following incubation of the bacteria with the two caged dyes, facilitated their localisation, as well as that of their uncaged form by catalyst addition. In fact, significant differences were observed, as only the more lipophilic dye was located inside the cells and importantly remained there, seemingly avoiding efflux mechanisms. However, the uncaged form of this dye is not retained, and was found predominantly in the extracellular space. Finally, a range of siderophore-conjugated derivatives of the catalyst were investigated for the same transformations. Even though uptake was observed, albeit less significant than for the non-conjugated version, the fact that similar intracellular reaction rates were observed regardless of the iron content of the medium supports the notion that their uptake is independent of the iron transporters utilised by Gram-positive <i>Bacillus subtilis</i> cells.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria.\",\"authors\":\"Nicole Schubert, James W Southwell, Melissa Vázquez-Hernández, Svenja Wortmann, Sylvia Schloeglmann, Anne-Kathrin Duhme-Klair, Patrick Nuernberger, Julia E Bandow, Nils Metzler-Nolte\",\"doi\":\"10.1039/d4cb00187g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioorthogonal reactions are extremely useful for the chemical modification of biomolecules, and are already well studied in mammalian cells. In contrast, very little attention has been given to the feasibility of such reactions in bacteria. Herein we report modified coumarin dyes for monitoring the internalisation and activity of bioorthogonal catalysts in the Gram-positive bacterial species <i>Bacillus subtilis</i>. Two fluorophores based on 7-aminocoumarin were synthesised and characterised to establish their luminescence properties. The introduction of an allyl carbamate (R<sub>2</sub>N-COOR') group onto the nitrogen atom of two 7-aminocoumarin derivatives with different solubility led to decreased fluorescence emission intensities and remarkable blue-shifts of the emission maxima. Importantly, this allyl carbamate group could be uncaged by the bioorthogonal, organometallic ruthenium catalyst investigated in this work, to yield the fluorescent product under biologically-relevant conditions. The internalisation of this catalyst was confirmed and quantified by ICP-OES analysis. Investigation of the bacterial cytoplasm and extracellular fractions separately, following incubation of the bacteria with the two caged dyes, facilitated their localisation, as well as that of their uncaged form by catalyst addition. In fact, significant differences were observed, as only the more lipophilic dye was located inside the cells and importantly remained there, seemingly avoiding efflux mechanisms. However, the uncaged form of this dye is not retained, and was found predominantly in the extracellular space. Finally, a range of siderophore-conjugated derivatives of the catalyst were investigated for the same transformations. Even though uptake was observed, albeit less significant than for the non-conjugated version, the fact that similar intracellular reaction rates were observed regardless of the iron content of the medium supports the notion that their uptake is independent of the iron transporters utilised by Gram-positive <i>Bacillus subtilis</i> cells.</p>\",\"PeriodicalId\":40691,\"journal\":{\"name\":\"RSC Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Chemical Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cb00187g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00187g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria.
Bioorthogonal reactions are extremely useful for the chemical modification of biomolecules, and are already well studied in mammalian cells. In contrast, very little attention has been given to the feasibility of such reactions in bacteria. Herein we report modified coumarin dyes for monitoring the internalisation and activity of bioorthogonal catalysts in the Gram-positive bacterial species Bacillus subtilis. Two fluorophores based on 7-aminocoumarin were synthesised and characterised to establish their luminescence properties. The introduction of an allyl carbamate (R2N-COOR') group onto the nitrogen atom of two 7-aminocoumarin derivatives with different solubility led to decreased fluorescence emission intensities and remarkable blue-shifts of the emission maxima. Importantly, this allyl carbamate group could be uncaged by the bioorthogonal, organometallic ruthenium catalyst investigated in this work, to yield the fluorescent product under biologically-relevant conditions. The internalisation of this catalyst was confirmed and quantified by ICP-OES analysis. Investigation of the bacterial cytoplasm and extracellular fractions separately, following incubation of the bacteria with the two caged dyes, facilitated their localisation, as well as that of their uncaged form by catalyst addition. In fact, significant differences were observed, as only the more lipophilic dye was located inside the cells and importantly remained there, seemingly avoiding efflux mechanisms. However, the uncaged form of this dye is not retained, and was found predominantly in the extracellular space. Finally, a range of siderophore-conjugated derivatives of the catalyst were investigated for the same transformations. Even though uptake was observed, albeit less significant than for the non-conjugated version, the fact that similar intracellular reaction rates were observed regardless of the iron content of the medium supports the notion that their uptake is independent of the iron transporters utilised by Gram-positive Bacillus subtilis cells.