{"title":"具有环境复杂噪声的二元手性粒子混合物的集体运动。","authors":"Jun Huang, Zhi-Gang Shao","doi":"10.1103/PhysRevE.110.034135","DOIUrl":null,"url":null,"abstract":"<p><p>The strategies for demixing and sorting mixed-chirality particles are crucial in the biochemical and pharmaceutical industries. However, whether chiral mixed particles can effectively separate in more complex spatial environments remains unresolved. In this paper, we explore the collective motion of binary chiral particle mixtures with environmental complex noise in the binary chiral Vicsek model (BCVM). We discover that the noisy region ratio, λ, significantly influences the separation behavior and spatial distribution of binary mixtures, unveiling system states not observed in uniform environments. Additionally, varying the chirality of particles reveals four distinct phases in our model. In the Vicsek bands phase (small chirality), an increase in λ can, under certain conditions, promote segregation rather than consistently hindering the demixing process. Conversely, for large chirality, localized dynamics and a homogeneous phase emerge, reducing the impact of λ on separation behavior. Notably, when chirality and activity are comparable, macrodrops and microflock phases appear, with a mixed-segregated state transition occurring at a critical λ_{c}. For λ<λ_{c}, chiral separation occurs with particles confined to the noise-free region. However, when λ>λ_{c}, particles gradually migrate to the noisy region, disrupting the separation. Further, we discuss the effects of multiple factors, including chirality, velocity, noise magnitude, particle number, and system size on λ_{c}. We also identify an optimal interaction radius at which λ_{c} reaches its peak value. Our findings may inspire strategies for achieving spontaneous demixing and spatial migration of mixed-chirality particles in complex environments.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective motion of binary chiral particle mixtures with environmental complex noise.\",\"authors\":\"Jun Huang, Zhi-Gang Shao\",\"doi\":\"10.1103/PhysRevE.110.034135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The strategies for demixing and sorting mixed-chirality particles are crucial in the biochemical and pharmaceutical industries. However, whether chiral mixed particles can effectively separate in more complex spatial environments remains unresolved. In this paper, we explore the collective motion of binary chiral particle mixtures with environmental complex noise in the binary chiral Vicsek model (BCVM). We discover that the noisy region ratio, λ, significantly influences the separation behavior and spatial distribution of binary mixtures, unveiling system states not observed in uniform environments. Additionally, varying the chirality of particles reveals four distinct phases in our model. In the Vicsek bands phase (small chirality), an increase in λ can, under certain conditions, promote segregation rather than consistently hindering the demixing process. Conversely, for large chirality, localized dynamics and a homogeneous phase emerge, reducing the impact of λ on separation behavior. Notably, when chirality and activity are comparable, macrodrops and microflock phases appear, with a mixed-segregated state transition occurring at a critical λ_{c}. For λ<λ_{c}, chiral separation occurs with particles confined to the noise-free region. However, when λ>λ_{c}, particles gradually migrate to the noisy region, disrupting the separation. Further, we discuss the effects of multiple factors, including chirality, velocity, noise magnitude, particle number, and system size on λ_{c}. We also identify an optimal interaction radius at which λ_{c} reaches its peak value. Our findings may inspire strategies for achieving spontaneous demixing and spatial migration of mixed-chirality particles in complex environments.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034135\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034135","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Collective motion of binary chiral particle mixtures with environmental complex noise.
The strategies for demixing and sorting mixed-chirality particles are crucial in the biochemical and pharmaceutical industries. However, whether chiral mixed particles can effectively separate in more complex spatial environments remains unresolved. In this paper, we explore the collective motion of binary chiral particle mixtures with environmental complex noise in the binary chiral Vicsek model (BCVM). We discover that the noisy region ratio, λ, significantly influences the separation behavior and spatial distribution of binary mixtures, unveiling system states not observed in uniform environments. Additionally, varying the chirality of particles reveals four distinct phases in our model. In the Vicsek bands phase (small chirality), an increase in λ can, under certain conditions, promote segregation rather than consistently hindering the demixing process. Conversely, for large chirality, localized dynamics and a homogeneous phase emerge, reducing the impact of λ on separation behavior. Notably, when chirality and activity are comparable, macrodrops and microflock phases appear, with a mixed-segregated state transition occurring at a critical λ_{c}. For λ<λ_{c}, chiral separation occurs with particles confined to the noise-free region. However, when λ>λ_{c}, particles gradually migrate to the noisy region, disrupting the separation. Further, we discuss the effects of multiple factors, including chirality, velocity, noise magnitude, particle number, and system size on λ_{c}. We also identify an optimal interaction radius at which λ_{c} reaches its peak value. Our findings may inspire strategies for achieving spontaneous demixing and spatial migration of mixed-chirality particles in complex environments.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.